إبستيمولوجيا الأبحاث متعددة التخصصات: تغيُّر النماذج الفلسفية للعلوم
الملخص
من المسلَّم به عمومًا في سياسة العلم أنّ حل المشكلات القائمة على العلم يتطلَّب بحثًا متعدد التخصصات. فعلى سبيل المثال، يستثمر صانعو السياسات في تمويل برامج مثل أفق 2020، التي تهدف إلى تحفيز الأبحاث متعددة التخصصات. ومع ذلك، فإنّ العمليات المعرفية التي تؤدي إلى الوصول إلى بحث فعّال متعدد التخصصات لا تُفهم جيدًا. يهدف هذا المقال إلى التوصّل إلى إبستيمولوجيا خاص بالأبحاث متعددة التخصصات (IDR)، وبوجه خاص الأبحاث متعددة التخصصات التي تهدف إلى حل مشكلات "العالم الواقعي". ثمة تركيز على مسألة؛ لماذا يواجه الباحثون صعوبات معرفية وإدراكية في إجراء الأبحاث متعددة التخصصات. واستنادًا إلى دراسة الأدب التربوي، نستنتج أنّ التعليم العالي يفتقد الأفكار الواضحة حول إبستيمولوجيا الأبحاث متعددة التخصصات، وبالتالي حول كيفية تعليمها. يُعتقَد أنّ الافتقار إلى الاهتمام الفلسفي في إبستيمولوجيا الأبحاث متعددة التخصصات يرجع إلى الأنموذج "الفلسفي" للعلم (الذي يُسمّى "الأنموذج الفيزيائي للعلم")، الذي يمنعنا من التعرُّف على التحديات المعرفية الجدّية في الأبحاث متعددة التخصصات في فلسفة العلم، إضافةً إلى تعليم العلم والبحث العلمي. وهذا الأنموذج الفلسفي البديل المقترح (المسمّى "أنموذجا هندسيا للعلم") يقتضي وجود افتراضات فلسفية مسبقة بديلة فيما يتعلّق بجوانب مثل هدف العلم، وطبيعة المعرفة، والمعايير المعرفية والبراغماتية لقبول المعرفة، ودور الأدوات التكنولوجية فيها. يفترض هذا الأنموذج الفلسفي البديل إنتاج المعرفة من أجل وظائف معرفية مثل هدف العلم، ويفسّر "المعرفة" (كالنظريات والنماذج والقوانين والمفاهيم) على أنها "أدوات معرفية" يجب أن تسمح بإجراء مهام معرفية يؤديها عملاء معرفيون، بدلًا من تفسير المعرفة على أنها "تمثيلات" لجوانب من العالم تُمثَّل بموضوعية وبمعزل عن الطريقة التي بُنيت فيها. ينطوي الأنموذج الهندسي للعلم على أنّ المعرفة تتشكّل بثبات من خلال آلية بنائها. كما أنّ الطريقة التي تبني فيها "التخصصات"، (أو الميادين) العلمية للمعرفة تسترشد بخصوصيات التخصص، التي يمكن تحليلها من خلال "المنظورات التخصصية". وهذا يعني أنّ المعرفة، و"الاستخدامات المعرفية" للمعرفة، لا يمكن فهمها دون فهم كيفية بناء المعرفة. وعليه، يحتاج الباحثون العلميون إلى ما يُسمّى "سقّالات ما وراء إدراكية" للمساعدة في تحليل كيفية إنشاء "المعرفة" وكيفية إعادة بنائها، وكيف تؤدي التخصصات المتنوعة ذلك بطريقة مختلفة. في الأنموذج الهندسي للعلم، يمكن أيضًا تفسير هذه الدعامات ما وراء الإدراكية على أنها أدوات معرفية، ولكنها في هذه الحالة أدوات توجّه "كيفية" إنتاج المعرفة وتمكينها وتقييدها من حيث التحليل والتعبير (أي شرح الجوانب المعرفية لإجراء الأبحاث). كما تساعد الدعامات ما وراء الإدراكية في الأبحاث متعددة التخصصات في التواصل بين التخصصات، الذي يهدف إلى تحليل كيفية بناء التخصص للمعرفة وكيفية التعبير عنها.
المقاييس
##plugins.themes.bootstrap3.article.details##
تعددية التخصصاتحل المشكلاترؤى إبستيمولوجيةمصفوفة تخصصيةكون (Kuhn)منظورات تخصصيةالأنموذج الهندسي للعلمعلوم هندسيةالتعليم العاليالخبرةمهارات ما وراء إدراكيةمهارات إدراكية عالية المستوىسقّالات ما وراء إدراكية
Aboelela, S. W., Larson, E., Bakken, S., Carrasquillo, O., Formicola, A., Glied, S. A., Gebbie, K. M. “Defining Interdisciplinary Research: Conclusions from a Critical Review of the Literature.” Health Services Research, Vol. 42 (2007), pp. 329–346. https://doi.org/10.1111/j.1475-6773.2006.00621.x
Addae, J. I., Wilson, J. I., & Carrington, C. “Students’ perception of a Modified form of PBL Using Concept Mapping.” Medical Teacher, Vol. 34, No. 11 (2012), pp. e756–e762. https://doi.org/10.3109/0142159X.2012.689440
Alvargonzález, D. “Multidisciplinarity, Interdisciplinarity, Transdisciplinarity, and the Sciences.” International Studies in the Philosophy of Science, Vol. 25, No. 4 (2011), pp. 387–403. https://doi.org/10.1080 /02698595.2011.623366
Andersen, H. “Collaboration, interdisciplinarity, and the epistemology of contemporary science.” Studies in History and Philosophy of Science Part A, Vol. 56 (2016), pp. 1–10. https://doi.org/10.1016/j.shpsa.2015.10.006
–––. “The Second Essential Tension: On Tradition and Innovation in Interdisciplinary Research.” Topoi, Vol. 32, No. 1 (2013), pp. 3–8. https://doi.org/10.1007/s11245-012-9133-z.
Andersen, H., & Wagenknecht, S. “Epistemic Dependence in Interdisciplinary Groups.” Synthese, Vol. 190, No. 11 (2013), pp. 1881–1898. https://doi.org/10.1007/s11229-012-0172-1
Aneas, A. “Transdisciplinary Technology Education: A Characterisation and some ideas for Implementation in the University.” Studies in Higher Education, Vol. 40, No. 9 (2015), pp. 1715–1728. https://doi.org/10.1080 /03075079.2014.899341
Apostel, L., Berger, G., Briggs, A., & Michaud, G. “Interdisciplinarity Problems of Teaching and Research in Universities.” Paris: Organization for Economic Cooperation and Development, 1972.
Aram, J. D. “Concepts of Interdisciplinarity: Configurations of Knowledge and Action.” Human Relations, Vol. 57, No. 4 (2004), pp. 379–412 http://www.journals.sagepub.com/doi/abs/10.1177/0018726704043893
Bammer, G. Disciplining Interdisciplinarity - integration and Implementation Sciences for Researching Complex Real-world Problems (Canberra: Australian National University E-press: 2013).
Bergmann, M. “The Integrative Approach in Transdisciplinary Research.” in: M. Bergmann, T. Jahn, T. Knobloch, W. Krohn, C. Pohl, & E. Schramm (eds.), Methods for Transdisciplinary Research - A Primer for Practice. Frankfurt/New York: Campus Verlag, 2012, pp. 22–49.
Boon, M. “An Engineering Paradigm in the Biomedical Sciences: Knowledge as Epistemic tool,” Progress in Biophysics and Molecular Biology, Vol. 129 (2017a), pp. 25–39. https://doi:j.pbiomolbio.2017.04.001
–––. “Contingency and inevitability in science – Instruments, Interfaces and the Independent World.” in: L. Soler, E. Trizio, & A. Pickering (eds.), Science as it Could Have Been: Discussing the Contingent/inevitable Aspects of Scientific Practices. Pittsburgh: University of Pittsburgh Press, 2015, pp. 151–174.
–––. “How science is applied in technology.” International Studies in the Philosophy of Science, Vol. 20, No. 1 (2006), pp. 27–47. https://doi.org/10.1080/02698590600640992
–––. “In Defense of Engineering Sciences: On the Epistemological Relations between Science and Technology,” Techné: Research in Philosophy and Technology, Vol. 15, No. 1 (2011), pp. 49–71. https://doi.org/10.5840 /techne20111515
–––. “Measurements in the Engineering Sciences: An Epistemology of Producing Knowledge of Physical Phenomena.” in: N. Mößner & A. Nordmann (eds.), Reasoning in Measurement. London and New York: Routledge, 2017, 203–219.
–––. “Philosophy of Science, In Practice: A Proposal for Epistemological Constructivism,” in: H. Leitgeb, I. Niiniluoto, P. Seppälä, & E. Sober (eds.), Logic, Methodology and Philosophy of Science – Proceedings of the 15th International Congress (CLMPS 2015). College Publications, 2017, pp. 289–310.
–––. “Scientific Concepts in the Engineering Sciences: Epistemic tools for Creating and Intervening with Phenomena.” in: U. Feest & F. Steinle (eds.), Scientific Concepts and Investigative Practice. Berlin: De Gruyter, 2012, pp. 219– 243.
–––. “Scientific Methodology in the Engineering Sciences.” in: D. Michelfelder & N. Doorn (eds.), Chapter 4 in the Routledge Handbook of Philosophy of Engineering. New York: Taylor & Francis / Routledge, 2019.
Boon, M., & Knuuttila, T. “Models as Epistemic tools in Engineering Sciences: A Pragmatic Approach.” in: a. Meijers (ed.), Philosophy of Technology and Engineering Sciences. Handbook of the Philosophy of Science, Vol. 9. North-Holland: Elsevier, 2009, pp. 687–720.
Bosque-Perez, N. A., Klos, P. Z., Force, J. E., Waits, L. P., Cleary, K., Rhoades, P. Holbrook, J. D. “A pedagogical model for team-based, problem-focused interdisciplinary doctoral education.” BioScience, Vol. 66, No. 6 (2016), pp. 477–488. https://doi.org/10.1093/biosci/biw042
Boumans, M. “Built-in justification.” in: M. S. Morgan & M. Morrison (eds.), Models as mediators - perspectives on natural and social science (Cambridge: Cambridge University Press, 1999), pp. 66–96.
Cartwright, N. How the Laws of physics lie (Oxford: Clarendon Press, Oxford University Press, 1983).
Cartwright, N. The dappled world. A study of the boundaries of science (Cambridge: Cambridge University Press, 1999).
Cat, J. “The Unity of Science.” in: E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2014).
Chan, C. K., Zhao, Y., & Luk, L. Y. “A validated and reliable instrument investigating engineering students’ perceptions of competency in generic skills.” Journal of Engineering Education, Vol. 106, No.2 (2017), pp. 299– 325. https://doi.org/10.1002/jee.20165.
Chang, H. Is water H2O? Evidence, realism and pluralism (The Netherlands: Springer, 2012).
Chang, H. “Epistemic Activities and Systems of Practice: Units of Analysis in Philosophy of Science After the Practice Turn.” in: L. Soler, M. Lynch, S. D. Zwart, & V. Israel-Jost (eds.), Science after the Practice Turn in the Philosophy, History, and Social Studies of Science (New York & London: Routledge, 2014), pp. 75–87.
Collins, H. M., & Evans, R. “The third wave of science studies: Studies of expertise and experience.” Social Studies of Science, Vol. 32 (2002), pp. 235–296.
Collins, H., & Evans, R. Rethinking Expertise (Chicago. London: The University of Chicago Press, 2007).
Cullingan, P. J., & Pena-Mora, F. “Engineering.” in R. Frodeman (ed.), The Oxford handbook of interdisciplinarity (Oxford: Oxford University Press, 2010), pp. 147–160.
Darden, L., & Maull, N. “Interfield theories.” Philosophy of Science, Vol. 44, No. 1 (1977), pp. 43–64.
DeZure, D. “Interdisciplinary pedagogies in higher education.” in R. Frodeman (ed.), The Oxford handbook of interdisciplinarity (Oxford: Oxford University Press, 2010), pp. 372–387.
Dupré, J. “The disunity of science.” Mind, Vol. 92, No. 367 (1983), pp. 321–346.
Edmondson, K. M., & Novak, J. D. “The Interplay of Scientific Epistemological Views, Learning Strategies, and Attitudes of College Students.” Journal of Research in Science Teaching, Vol. 30, No. 6 (1993), pp. 547–559. https://doi.org/10.1002/tea.3660300604.
Flavell, J. H. “Metacognition and Cognitive Monitoring: A New Area of Cognitive–developmental Inquiry.” American Psychologist, Vol. 34, No. 10 (1979), pp. 906. https://doi.org/10.1037/0003-066X.34.10.906
Fortuin, K. P. J., & van Koppen, C. S. A. “Teaching and Learning Reflexive Skills in Inter- and Transdisciplinary Research: A Framework and its Application in Environmental Science Education.” Environmental Education Research, Vol. 22, No. 5 (2016), pp. 697–716. https://doi.org/10.1080/13504622.2015.1054264
Frodeman, R. “Introduction,” in: R. Frodeman, J. T. Klein, & C. Mitcham (eds.), The Oxford Handbook of Interdisciplinarity. Oxford: The Oxford University Press, 2010, pp. xxix-xxxix.
Frodeman, R., & Mitcham, C. “New Directions in Interdisciplinarity: Broad, Deep, and Critical.” Bulletin of Science, Technology & Society, Vol. 27, No. 6 (2007), pp. 506–514. https://doi.org/10.1177/0270467607308284
Giere, R. N. “An Agent-based Conception of Models and Scientific Representation.” Synthese, Vol. 172 (2010), pp. 269– 281.
–––. “How Models are used to Represent Reality.” Philosophy of Science, Vol. 71 (2004), pp. 742–752.
–––. Scientific Perspectivism. Chicago and London: The University of Chicago Press, 2006.
–––. Science without Laws: Science and its Conceptual Foundations. Chicago: Chicago University Press, 1999.
Gnaur, D., Svidt, K., & Thygesen, M. “Developing students’ collaborative skills in interdisciplinary learning environments.” International Journal of Engineering Education, Vol. 31, No. 1B) (2015), pp. 257–266.
Goddiksen, M. P. “Clarifiying interactional and contributory expertise.” Studies in History and Philosophy of Science Part A, Vol. 47 (2014), pp. 111–117.
Goddiksen, M., & Andersen, H. “Expertise in interdisciplinary science and education.” Centre for Science Studies Aarhus University (2014) [Preprint]. Retrieved from: http://philsci-archive.pitt.edu/id/eprint/11151
Grantham, T. A. “Conceptualizing the (dis)unity of science.” Philosophy of Science, Vol. 71, No. 2 (2004), pp. 133–155. https://doi.org/10.1086/383008
Green, S. “When one model is not enough: Combining epistemic tools in systems biology.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, Vol. 44, No. 2 (2013), pp. 170–180. https://doi.org/10.1016/j.shpsc.2013.03.012
Grüne-Yanoff, T. “Models as products of interdisciplinary exchange: Evidence from evolutionary game theory.” Studies in History and Philosophy of Science Part A, Vol. 42, No. 2 (2011), pp. 386–397. https://doi.org/10.1016/j. shpsa.2010.12.004
–––. “Teaching philosophy of science to scientists: Why, what and how.” European Journal for Philosophy of Science, 4, Vol. No.1 (2014), pp. 115–134. https://doi.org/10.1007/s13194-013-0078-x
Haynes, C. & Brown-Leonard, J., “From Surprise Parties to Mapmaking: Undergraduate Journeys toward Interdisciplinary Understanding.” The Journal of Higher Education, Vol. 81, No. 5, (2010), pp. 645–666. https://doi. org/10.1080/00221546.2010.11779070.
Hirsch-Hadorn, G., Pohl, C., & Bammer, G. “Solving Problems through Transdisciplinary Research.” in R. Frodeman (ed.), The Oxford Handbook of Interdisciplinarity (Oxford: Oxford University Press, 2010), pp. 431–452.
Holbrook, J. B. “What is Interdisciplinary Communication? Reflections on the Very Idea of Disciplinary Integration.” Synthese, Vol. 190, No. 11 (2013), pp. 1865–1879. https://doi.org/10.1007/s11229-012-0179-7
Huutoniemi, K., Klein, J. T., Bruun, H., & Hukkinen, J. “Analyzing Interdisciplinarity: Typology and Indicators.” Research Policy, Vol. 39 (2010), pp. 79–88.
Ivanitskaya, L., Clark, D., Montgomery, G., & Primeau, R. “Interdisciplinary Learning: Process and Outcomes,” Innovative Higher Education, Vol. 27, No. 2 (2002), pp. 95–111. https://doi.org/10.1023/A:1021105309984
Jacobs, J. A., & Frickel, S. “Interdisciplinarity: A Critical Assessment.” Annual Review of Sociology, Vol. 35, No.1 (2009), pp. 43–65.
Jantsch, E. “Inter- and Transdisciplinary University: A systems approach to education and innovation.” Higher Education, Vol. 1, No.1 (1972), pp.7–37.
Khosa, D. K., & Volet, S. E. “Promoting effective collaborative case-based learning at university: A metacognitive intervention.” Studies in Higher Education, Vol. 38, No. 6 (2013), pp. 870–889. https://doi.org/10.1080 /03075079.2011.604409.
Klein, J. T. “A taxonomy of Interdisciplinarity,” in R. Frodeman, J. T. Klein, & C. Mitcham (eds.), The Oxford Handbook of Interdisciplinarity. (Oxford: Oxford University Press, 2010, pp. 15–30.
–––. Crossing Boundaries: Knowledge, Disciplinarities, and Interdisciplinarities. Charlottesville: University Press, 1996.
–––. Interdisciplinarity: History, Theory and Practice. Detroit: Wayne state University Press, 1990.
Kline, S. J. Conceptual Foundations for Multidisciplinary Thinking. California Stanford University Press, 1995.
Knuuttila, T., & Boon, M. “How do models give us knowledge? The case of Carnot’s ideal heat engine.” European Journal for Philosophy of Science, Vol. 1, No. 3 (2011), pp. 309–334. https://doi.org/10.1007/s13194-011-0029-3
Krohn, W. “Interdisciplinary cases and disciplinary knowledge.” in R. Frodeman, J. T. Klein, & C. Mitcham (eds.), The Oxford Handbook of Interdisciplinarity. Oxford: Oxford University Press, 2010, pp. 31–49.
Kuhn, T. S. The Structure of Scientific Revolutions. Chicago: The University of Chicago Press, 2nd ed., 1970.
Lattuca, L. R. Creating interdisciplinarity: Interdisciplinary Research and Teaching Among College and University Faculty. Nashville: Vanderbilt University Press, 2001.
–––. “Learning interdisciplinarity: Sociocultural Perspectives on Academic Work.” The Journal of Higher Education, Vol. 73, No.6 (2002), pp. 711–739 http://www.jstor.org/stable/1558403
Lattuca, L. R., Knight, D. B., Ro, H. K., & Novoselich, B. J. “Supporting the development of Engineers' interdisciplinary competence.” Journal of Engineering Education, Vol. 106, No.1 (2017), pp. 71–97. https://doi. org/10.1002/jee.20155
Liu, S. Y., Lin, C. S., & Tsai, C. C. “College Students' scientific epistemological views and thinking patterns in Socioscientific decision making.” Science Education, Vol. 95, No. 3 (2011), pp. 497–517. https://doi.org/10.1002 /sce.20422
Lourdel, N., Gondran, N., Laforest, V., Debray, B., & Brodhag, C. “Sustainable development cognitive map: A new method of evaluating student understanding.” International Journal of Sustainability in Higher Education, Vol. 8, No. 2 (2007), pp. 170–182. https://doi.org/10.1108/14676370710726634
MacLeod, M. “What Makes Interdisciplinarity Difficult? Some Consequences of Domain Specificity in Interdisciplinary Practice.” Synthese, Vol. 195 (2016), pp. 1–24. https://doi.org/10.1007/s11229-016-1236-4
MacLeod, M., & Nersessian, N. J. “Coupling simulation and experiment: The bimodal strategy in integrative systems biology.” Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences Part A, Vol. 44, No. 4 (2013), pp. 572–584. https://doi.org/10.1016/j. shpsc.2013.07.001
Maki, U. “Philosophy of interdisciplinarity. What? Why? How? European Journal for Philosophy of Science.” Vol. 6, No. 3 (2016), pp. 327–342. https://doi.org/10.1007/s13194-016-0162-0.
Mansilla, V. B. “Learning to synthesize: the development of interdisciplinary understanding.” in R. Frodeman (ed.), The Oxford Handbook of Interdisciplinarity. Oxford: Oxford University Press, 2010, pp. 288–306.
Mattila, E. “Interdisciplinarity Bin the making: Modeling infectious diseases.” Perspectives on Science, Vol. 13, No. 4 (2005), pp. 531–553. https://doi.org/10.1162/106361405775466081
Maull, N. L. “Unifying science without reduction.” Studies in History and Philosophy of Science Part A, Vol. 8, No. 2 (1977), pp. 143–162. https://doi.org/10.1016/0039-3681(77)90012-7
McComas, W. F., Almazroa, H., & Clough, M. P. “The nature of science in science education: An introduction.” Science & Education, Vol. 7, No. 6 (1998), pp. 511–532. https://doi.org/10.1023/A:1008642510402
Menken, S., & Keestra, M. An Introduction to Interdisciplinary Research: Theory and Practice. Amsterdam: University Press, 2016.
Mitchell, S. D. Unsimple Truths, Science Complexity and Policy. Chicago and Londen: The University of Chicago Press, 2009.
Nagel, E. The Structure of Science; Problems in the Logic of Scientific Explanation. New York: Harcourt, Brace and World, 1961.
National Academy of Sciences; National Academy of Engineering; Institute of Medicine; Policy and Global Affairs; Committee on Science, E., and Public Policy; Committee on Facilitating Interdisciplinary Research, Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press, 2005.
National Science Foundation. Impact of Transformative Interdisciplinary Research and Graduate Education on Academic Institutions. Washington, Cd, 2008.
Nersessian, N. J. Creating scientific concepts. Cambridge, MA: MIT Press, 2009.
Nersessian, N. J., & Patton, C. “Model-based Reasoning in Interdisciplinary Engineering.” in: a. W. M. Meijers (ed.), Handbook of the Philosophy of Technology and Engineering Sciences. Northholland: Elsevier, 2009, pp. 687–718.
Newell, W. H. “A theory of interdisciplinary studies.” Issues in Integrative Studies, Vol. 19, (2001), pp. 1–25.
–––. “The state of the field: Interdisciplinary theory.” Issues in Interdisciplinary Studies, Vol. 31 (2013), pp. 22–43.
Newstetter, W. C. “Designing cognitive apprenticeships for biomedical engineering.” Journal of Engineering Education, Vol. 94, No. 2 (2005), pp. 207–213.
Nikitina, S. “Three strategies for interdisciplinary teaching: Contextualizing, conceptualizing, and problem-centring.” Journal of Curriculum Studies, Vol. 38, No. 3 (2006), pp. 251–271. https://doi.org/10.1080 /00220270500422632
Novak, J. D. “Concept mapping: A useful tool for science education.” Journal of Research in Science Teaching, Vol. 27, No.10 (1990), pp. 937–949. https://doi.org/10.1002/tea.3660271003.
Oppenheim, P., & Putnam, H. “Unity of science as a working hypothesis,” in H. Feigl, M. Scriven, & G. Maxwell (eds.), Minnesota studies in the philosophy of science, Vol. 2 (Minneapolis: University of Minnesota Press, 1958), pp. 3–36.
O'Rourke, M., Crowley, S., & Gonnerman, C. “On the nature of cross-disciplinary integration: A philosophical framework.” Studies in History and Philosophy of Science Part C, Vol. 56 (2016), pp. 62–70. https://doi. org/10.1016/j.shpsc.2015.10.003
Pintrich, P. R., “The role of metacognitive knowledge in learning, teaching. and assessing,” Theory into practice, Vol. 41, No. 4 (2002), pp. 219–225 http://www.tandfonline.com/doi/pdf/10.1207/s15430421tip4104_3
Procee, H. “Reflection in education: A Kantian epistemology.” Educational Theory, Vol. 56, No. 3 (2006), pp. 237–253. https://doi.org/10.1111/j.1741-5446.2006.00225.x.
Repko, A. F. Interdisciplinary Research: Process and Theory. Thousand Oaks, CA: Sage, 2008.
Repko, A. F., & Szostak, R. Interdisciplinary Research: Process and Theory. Los Angeles: Sage, 3rd ed., 2017.
Repko, A., Navakas, F., & Fiscella, J. “Integrating Interdisciplinarity: How the theories of common ground and Cognitive_Interdisciplinarity are informing the debate on interdisciplinary integration.” Issues in Interdisciplinary Studies, Vol. 25, No. 16 (2007), pp. 1–31.
Robles, M. M. “Executive perceptions of the top 10 soft skills needed in Today’s workplace.” Business Communication Quarterly, Vol. 75, No. 4 (2012), pp. 453–465. https://doi.org/10.1177/1080569912460400
Rossini, F. A., & Porter, A. L. “Frameworks for integrating interdisciplinary research.” Research Policy, Vol. 8, No. (1979), pp. 70–79.
Schmidt, J. C. “Towards a philosophy of interdisciplinarity.” Poiesis & Praxis, Vol. 5, No. 1 (2008), pp. 53–69. https://doi. org/10.1007/s10202-007-0037-8
–––. “What is a problem? On problem-oriented interdisciplinarity.” Poiesis & Praxis, Vol. 7, No. 4 (2011), pp. 249–274. https://doi.org/10.1007/s10202-011-0091-0.
Sin, C. “Epistemology, sociology, and learning and teaching in physics.” Science Education, Vol. 98, No. 2 (2014), pp. 342– 365. https://doi.org/10.1002/sce.21100
Spelt, E. J., Biemans, H. J., Tobi, H., Luning, P. A., & Mulder, M. “Teaching and learning in interdisciplinary higher education: A systematic review.” Educational Psychology Review, Vol. 21, No. 4 (2009), pp. 365– 378. https://doi.org/10.1007/s10648-009-9113-z.
Stentoft, D. “From saying to doing interdisciplinary learning: Is problem-based learning the answer?” Active Learning in Higher Education, 2017. (online) http://www.journals.sagepub.com/doi/abs/10.1177 /1469787417693510
Strang, V. “Integrating the social and natural sciences in environmental research: A discussion paper.” Environment, Development and Sustainability, Vol. 11, No. 1 (2009), pp. 1–18. https://doi.org/10.1007/s10668-007-9095-2
Suárez, M. “Scientific representation: Against similarity and isomorphism.” International Studies in the Philosophy of Science, Vol. 17, No. 3 (2003), pp. 225–244.
–––. “Scientific representation.” Philosophy Compass, Vol. 5, No. 1 (2010), pp. 91–101.
Thomas, L., Bennett, S., & Lockyer, L. “Using concept maps and goal-setting to support the development of self-regulated learning in a problem-based learning curriculum.,” Medical Teacher, Vol. 38, No. 9 (2016), pp. 930–935. https://doi.org/10.3109/0142159x.2015.1132408
Thorén, H. “The hammer and the nail: interdisciplinarity and problem solving in sustainability science.” (PhD thesis, Lund University, 2015), pp. 1-356.
Thorén, H., & Persson, J. “The philosophy of Interdisciplinarity: Sustainability science and problemfeeding.” Journal for General Philosophy of Science, Vol. 44, No. 2 (2013), pp. 337–355. https://doi.org/10.1007/s10838-013- 9233-5
Tsai, C. C. “Teachers' scientific epistemological views: The coherence with instruction and students' views.” Science Education, Vol. 91, No. 2 (2007), pp. 222–243. https://doi.org/10.1002/sce.20175
Tuana, N. “Embedding philosophers in the practices of science: Bringing humanities to the sciences.” Synthese, Vol. 190, No. 11 (2013), pp. 1955–1973. https://doi.org/10.1007/s11229-012-0171-2
Turner, S. “What are disciplines? And how is interdisciplinarity different,” in: N. Stehr & P. Weingart (eds.), Practising interdisciplinarity. Toronto: University of Toronto Press, 2000, pp. 46–65.
Turner, V. K., Benessaiah, K., Warren, S., & Iwaniec, D. “Essential tensions in interdisciplinary scholarship: Navigating challenges in affect, epistemologies, and structure in environment–society research centers.” Higher Education, Vol. 70, No. 4 (2015), pp. 649–665. https://doi.org/10.1007/s10734-015-9859-9
Van den Beemt, A., MacLeod, M., Van der Veen, J. T., Van de Ven, A. M. A., Van Baalen, S. J., Klaassen, R. G., & Boon, M. “Interdisciplinary engineering education: A systematic review on vision, teaching, and support.” Journal of Engineering Education, Vol. 109, No. 3 (2020).
Van Fraassen, B. C., Scientific representation. Oxford: Oxford University Press, 2008.
Weideman, M., & Kritzinger, W. “Concept mapping: A proposed theoretical model for implementation as a knowledge repository.” ICT in Higher Education, 2003. Retrieved from https://web.stanford.edu/dept/SUSE/projects/ireport/articles/concept_maps/Concept%20map%20as%20knwoledge%20 repository.pdf
Yerrick, R. K., Pedersen, J. E., & Arnason, J. "We're just spectators: A case study of science teaching, epistemology, and classroom management.” Science Education, Vol. 82, No. 6 (1998), pp. 619–648.
Zohar, A., & Barzilai, S. “A review of research on metacognition in science education: Current and future directions.” Studies in Science Education, Vol. 49, No. 2(2013), pp. 121–169. https://doi.org/10.1080 /03057267.2013.847261