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INTRODUCTION

Safety stock provides a “cushion” against the

uncertainty of demand during lead-time.

Setting safety stock policies remains an

important issue in managing wholesale and

retail inventories, as well as stores, spare

parts, supply items, and in certain areas of

production planning. In such applications,

managers need to specify their demand

distributions to improve the quality of their

inventory policies.  The purpose of this paper

is to show how optimal safety stock policies

under several commonly used statistical

demand distributions can be determined.  In

those situations where a manager has limited

information on the shape of the demand

distribution, Chebychev’s Inequality

Theorem is exploited to determine the

optimal policies.

Safety stock plays a significant role in

production and inventory planning [e.g. 5, 6,

8, and 9].  Therefore, the determination of

the optimal safety stock policy is an important

issue for researchers and managers alike.
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ABSTRACT

Setting safety stock policies are especially important in the management of retail and wholesale

inventories, as well as stores, spare parts, supply items, and in certain areas of production

planning.  From a practical perspective, determining the optimal safety stock policy and the

optimal service level requires specifying the demand distribution.  This paper develops optimal

safety stock policies under several commonly used statistical demand distributions: normal,

exponential, and poisson. In those situations where a manager has limited information on the

shape of the demand distribution, Chebychev’s Inequality Theorem is exploited to determine

the optimal policies.  The suggested computational approach enables the order quantity and

the number of standard deviations that specifies the service level to be jointly determined by

minimizing total relevant cost.  A numerical example is also given to illustrate the computational

process.
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Many researchers have studied safety stock

and the different methods used to determine

its policies [e.g. 1, 2, 3, and 4]. Aucamp [5]

has presented a simplified model for

determining the safety stock level.  His model

is limited to the Poisson distribution, and

ignores the relationship between the order

quantity and the service level.

In practice, other probability distributions,

such as the Normal and the exponential, have

useful properties for modeling lead-time

demand.  The normal distribution, for

example, is appropriate when demand for the

item is relatively large.  The exponential

distribution possesses convenient

mathematical properties and is useful when

demand for an item is at a relatively low rate

per unit time.  Using the appropriate

probability distribution more accurately

captures the behavior of demand and leads

to a lower cost solution.  In addition, the joint

determination of the order size and service

level provides the optimal solution, and

therefore, represents an improvement over the

approach suggested by Aucamp.

In the next section we present a marginal

analysis approach for jointly determining the

optimal order size (Q) and the optimal

number of standard deviations that specifies

the service level (Z).  Next, we develop

optimal policies for the normal, exponential,

poisson, and unknown demand distributions.

This is followed by a numerical example to

illustrate the proposed approach.  We

conclude the paper by discussing the

managerial implications of this research.

SERVICE LEVEL DEFINED

To determine the optimal safety

stock policy, the service level must be clearly

specified.  Defining service level is most

important when an organization does not

know its stockout costs or feels very uneasy

about estimating them.  Under these

conditions, it is common for management to

set service levels from which recorder points

can be ascertained.  A service level, therefore,

indicates the ability of a company to meet

customer demands from available stock.

There are several ways to measure a service

level.  It can be measured by either order

service level (OSL) or unit service level

(USL).  USL, which is sometimes known as

“fill rate”, counts the average number of units

short expressed as the percentage of the order

quantity. The OSL measures the percentage

of cycles that will be out of stock or the

probability of stockouts.  If, for example, the

desired service level is 80%, it is necessary

to clarify whether this is 80% OSL or 80%

USL because the safety stock level would be

quite different in these two situations.  In this

paper we will use OSL.

SAFETY STOCK
DETERMINATION USING
MARGINAL ANALYSIS

Notation

Let:

Q = lot size

h = carrying cost per unit per year

D
L

= demand during the lead time

D L
= average demand during the lead

time

r = reorder point
σ

L
= standard deviation of lead time

demand

D t
= average demand per time period t

LT = average lead time

σ
LT

= standard deviation of lead time

σ
LTD

= standard deviation of the
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combined lead time and demand

variations

Z = number of standard deviations that

specifies the       service level

σ
t

= standard deviation per time period t

C
u

= shortage cost per unit per cycle

D = annual demand

N
L

= expected number of units short

during the lead time

S = setup cost.

The safety stock, SS = Zσ
L
, can be specified

when shortage and carrying costs are known

[5].  The intuition is that raising the reorder

point by one unit of inventory will cost us

hQ/D per cycle.  On the other hand, if we do

not increase the reorder point by one unit of

inventory, it will cost us a shortage cost of C
u

per unit per cycle with the probability of

demand greater than the reorder point, i.e.,

P(D
L
 > r).  The probability of demand which

is greater than the reorder point is commonly

known as the stockout risk (SOR).  Therefore,

by marginal analysis, the above statement can

be expressed in equation form in the

backorder case (units are backordered

because of shortage) for determining the

optimal safety stock.  In this case, the

following relationship holds:

hQ/D = P(D
L
>r)C

U

Accordingly, the condition of optimality can

be expressed as:

SOR = P(D
L
>r) = hQ/DC

u
                      (1)

and the total relevant cost (TRC) including

the shortage cost for the inventory problem

is given by

TRC = Qh/2 + hZσ
L
 + DS/Q + C

u
N

L
D/Q              (2)

The first two terms in (2) are carrying costs

and the last two terms are the setup and

shortage costs, respectively.  Equations (1)

and (2) are the guiding equations for the

determination of optimal service levels and

lot sizes under several demand distributions

assuming constant lead time.  Because of the

interrelationship between Q and Z, an

iterative process will be used to determine

the optimal safety stock policy.

Normal Distribution

To determine the optimal safety stock, the

optimal Z value must be found.  Instead of

deriving it mathematically, we can use the

condition of optimality in equation (1)

presented above. An iterative process is used

to determine the values of Q and Z.  The steps

of the iterative process are:

1. Initially, set Q = (2DS/h)1/2 , i.e. the well

known EOQ

2. Calculate P(D
L
>r) = hQ/C

u
D.  The value

of Z corresponding to P(D
L
>r) can be

found from the normal distribution table.

The total relevant cost is

TRC = Qh/2 + hZσ
L
 + DS/Q + C

u
σ

L
 g(Z)D/Q

where σ
L
g(Z) = N

L
, and g(Z) is the expected

number of units short under normal

distribution with  σ
L
 = 1.  Letting the partial

derivative of TRC with respect to Q equal to

0, we obtain:

Q = (2D(S+C
u
σ

L
g(Z))/h)1/2                         (3)

3. Substitute Z into equation (3), and

determine the revised Q.

4. Substitute the revised Q into step 2 to find

the revised Z.

5. Repeat steps 3 and 4 until Z and Q values

are stabilized.
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Once the optimal Z and Q are found, the

optimal safety stock is defined by:

SS* = Z*σ
L

Exponential Distribution

When actual demand data can be properly
described by the exponential distribution, it
can be shown that (The derivations are given
in the appendix):

SOR = P(D
L
>r) = e-(1+Z)                   (4)

σ
L
 = D L

N
L
 = σ

L
e-(1+Z)

Using the condition of optimality in equation
(1), the optimal service level under the
exponential distribution must satisfy

e-(1+Z) = hQ/C
u
D                       (5)

It is clear that shortage can occur only during
the lead time period when the fixed order
quantity inventory control system is used.
Therefore, the ordering cost and shortage cost
can be combined.  The optimal order quantity
including the shortage cost is given by:

Q = {2D(S + C
u
σ

L
e-(1+Z))/h}1/2                  (6)

The Z value of equation (5) can be
numerically evaluated using the initial value
Q = (2DS/h)1/2.  Using the iterative process,
as shown in the normal distribution case, we
can find the optimal values of Z and Q.  As a
result, the optimal safety stock is given by

SS* = Z*σ
L
 = Z* D

L
                       (7)

The total relevant cost can still be determined
by equation (2).

Poisson Distribution

For slow moving items, the poisson

distribution would be most appropriate

because of its special mathematical

properties. The standard deviation for this

distribution is equal to  % mean.  Aucamp

[5] has shown that if the demand can be

estimated by the poisson distribution, the

optimal safety stock can be established by

finding the optimal Z value.  The formulas

for Z and TRC are, respectively,

Z = {2 ln [C
u
σ 

L
/(4πICST)1/2]} 1/2                (8)

TRC = Qh/2 + DS/Q + Zσ
L
h + C

U
σ

L
aD/Q

If we let dTRC/dQ = 0, we obtain

Q = [2D(S + C
u
α σ

L
)/h]1/2                    (9)

where a = P(D
L
>r) and,  T = lead time.

Variable Lead Time

If lead time is uncertain, the standard

deviation must include both the variation of

demand and the variation of lead time, i.e.,

σ
LTD

.  If the demand distribution is normal,

then as shown in [4]:

σ
LTD

 = [LTσ
t
2 + (D t

 σ
LT

)2]1/2

Where the first term is the demand variation

given mean lead time and the second term is

the lead time variation given mean demand.

Similarly, if the distribution is exponential,

then

σ
LTD

 = [LTσ
t
2 + (D t

 2LT)2]1/2,  since  σ
LT

 = LT

and, if the distribution is poisson,

σ
LTD

 = [LT(σ
t
2 +D t

 ]1/2,  since σ
LT

 = (LT)1/2 .

It is obvious that the safety stock would be

much higher under the variable lead time

situation (Zσ
LTD

>Zσ
L
).  The total relevant cost

can be calculated using equation (2) by

replacing σ
L
 with σ

LTD
.
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Lost Sales Case

The above safety stock policies are assumed

to be of the backorder shortage case.  In the

lost sales case, the stockout cost, C
u
, includes

foregone revenue.  Adding one unit to the

order point incurs hQ/D in carrying costs.  If

we do not add the unit, the penalty of stockout

is C
u
 and one extra unit of inventory will be

held through the next cycle (because a full

supply of Q is on hand to start the next cycle

and in the backorder case the beginning

inventory is one unit less).  Therefore,

hQ/D = P(D
L
>r)(C

u
 + hQ/D)

SOR = P(D
L
>r) = hQ/(hQ + C

u
D).               (10)

is the condition of optimality.  The optimal

service level for the various distributions must

be equal to 1 - hQ/(hQ + C
u
D).  This indicates

that a higher service level will be realized

because of increased safety stock size in

comparison to the backorder case.

Unknown Distribution

There are cases in which we do not know or

have sufficient data to construct the specific

demand distribution.  Our knowledge may be

confined to only the average demand and

standard deviation. Since there are many

probability distributions with same mean and

standard deviation, it is very difficult to

determine the optimal safety stock without

the knowledge of the specific distribution.  In

order to provide some protection against

possible stockouts under this situation, we

may be forced to use the well-known

Chebychev inequality theory.  Of course, the

safety stock policy can be improved when

more information becomes available.

Cheychev’s inequality theory [10] states that

“Given probability distribution with the mean

and standard deviation, the probability of

obtaining a value within k standard deviations

of the mean is at least 1-1/k2.”

This approach is a very conservative

approach.  The total relevant cost, in this case,

is given by:

TRC = Qh/2 + DS/Q + Zσ
L
h + C

u
σ

L
D/QZ2

where z = k, and,  σ
L
/Z2 = N

L

Solving the TRC equation, we obtain the

following optimal values for Z and Q:

Z = (2C
u
D/hQ)1/3                               (11)

Q = [2D(S + C
u
σ

L
/Z2)]1/2                   (12)

We set the initial value Q = (2DS/h), then the

iterative process described earlier could be

used to find the optimal Z and Q.  Thus,

SS* = Z* σ
L
.

Illustrative Example

Suppose we have h = $10, D = 1250 units, C
u

= $18.8, S = $500.  Lead time = 1 week.  The

demand distribution during the lead time

period is given as follows:

Demand (units) Probability
 0 0.22

10 0.22

20 0.14

30 0.11

40 0.11

50 0.08

60 0.06

70 0.06

The actual mean = 25, standard deviation =

22. To determine whether a particular

theoretical distribution applies to the actual

data, the chi-square (C2) goodness-of-fit test

can be    used.  The C2 test indicates that the

exponential distribution fits the actual data

best in this case.  The theoretical exponential
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distribution has the property that mean =

standard deviation = 25. Assuming the

backorder case, the condition of optimality is

SOR = P(D
L
>r) = hQ/C

u
D = 10(353)/

18.8(1250) = 0.15

where the initial value Q = (2SD/h)1/2 = 353.

By equation (5), thus, e-(1+Z) = hQ/C
u
D = 0.15

and by evaluating Z numerically, we obtain

Z = 0.9 and the revised

Q ={ 2(1250)(500 + (18.8)(25)(0.15) }1/2 = 377

10

By iteration, the revised SOR = 0.16 = e-(1+Z).

The values of Z and Q are stabilized at Z =

0.85, Q = 379.  The optimal safety stock

SS* = Z*σ
L
 = 0.85(25) = 21.  By equation (2)

we obtain:

TRC = 379($10)/2 + 1250($500)/379 + 0.85

(25) ($10)

+ $18.8(25(0.516) = $3997.

The SS = 21 with the SOR = 0.16 satisfies

the order service level of 84%.  If the demand

distribution was wrongly assumed to be

normal or poisson, the results, by equations

(1) through (3) and (9), would have been as

follows:

Normal Poisson
Mean 25 25

Std. dev. 22 5

Z 1.01 1.02

Q 364 358

SS 22 5

TRC $4004 $4084

For example, if the poisson distribution was

selected to estimate the demand distribution,

we would have assumed that the standard

deviation = the square root of the mean.

Therefore, we would have found that SS = 5

and the order point = 30.  It is clear that the

safety stock level, in this case, would be too

low for the demand distribution which was

actually exponential.  The probability of

shortage (SOR) for SS = 5 is approximately

30% (SS = Z(25)=5, Z=0.2, therefore,

e-(1+0.2) = 0.30) which is much higher than the

condition of optimality at 16%.  As a result,

the TRC = $4084.  Similarly, the TRC would

have been $4004 if the normal distribution

was used.

Unknown Distributions

If the manager has only limited information

and has estimated that the mean of the

demand during the lead time = 25 and the

standard deviation = 22, then by equations

(11) and (12) we get:

                       {2(18.8)(1250)}  1/2

           Z =       (1)(335)       = 2.37

Q = [2(1250)[500 + 18.8/(2.37)
2
]/10]1/2 = 355;

the optimal safety stock policy is SS =

2.37(22) = 52, and,

                   1

SL ≥ 1 - (2.37)2 = 82%.  This means that if

we set safety stock level at 52 units, the

service level is at least 82%.  This is the best

a firm can hope for to provide some

protection against stockout situations without

sufficient information.  Of course, the safety

stock level can be improved when more

information becomes available.

SUMMARY

Under conditions of demand uncertainty,

safety stock must be established to provide

protection against possible stockouts during
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the lead time period.  In this paper, we have

emphasized the following in order to

determine the lot size and the optimal safety

stock policy:

1. Service level must be clearly defined, OSL

or USL;

2. In order to properly determine the optimal

safety stock policy, an appropriate

theoretical demand distribution should be

chosen using the chi-square test;

3. Because of the interrelationship between

safety stock level and lot size, Z and Q

must be jointly determined;

4. In case of insufficient data, the well-

known Chebychev inequality theory can

be used to set up the safety stock level

until more information becomes available.

CONCLUSIONS AND
MANAGERIAL
IMPLICATIONS

Generally, it is believed that production and

inventory managers are not interested in

optimal solutions.  Reasons often given

include:

(1) they are used to  rules of thumb that have

provided satisfactory solutions in the past;

and,

(2) they are not aware of the availability of

better solution methods.

In this paper, we have shown that settling for

a satisfactory solution is not enough.  These

findings are consistent with findings of many

other researchers on decision-making [e.g.

14, and 15].  These researchers have found

that cognitive limitations, cost, and limits on

time force individual and group decision-

makers to choose simplistic/heuristic models

which provide approximate solutions to

problems facing them.  A number of

additional researchers have provided

consistent evidence of direct and indirect

antecedent effects of environmental

characteristics upon information utilization

within organizations (e.g. 16, and 17).  The

environmental variables reported in these

studies include: environmental uncertainty,

complexity and threat.

Production and inventory management

decisions are highly complex and subject to

uncertainty.  They are influenced by the

aforementioned cognitive and environmental

variables.  Managers may gain a time

advantage in seeking approximate solutions

rather than optimal solutions to their

inventory control problems.  Nevertheless,

these approaches do not minimize the overall

inventory cost and do not take the

consequences of environmental uncertainty

into consideration.  Over the long run, the

firm might be vulnerable to losing its

competitive position in the market place.  For

example, consider the intense competition

that exists among the major mega-retailers,

such as Wal-Mart, K-Mart, and so on.  In

these and similar situations, managers need

to improve the quality of their inventory

policies.  Deciding to use optimal inventory

policies such as those presented here do not

take much additional manager’s time and can

dramatically improve the firm’s ability to gain

a competitive advantage.
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Appendix

Assume demand for an item in lead time “L” has distribution P(D
L
), where D

L
 is demand

during “L”.  The exponential distribution is defined as

P (D
L
) dD

L
 = λ exp (- λ D

L
) * dD

L

where

                                        and    σ
L
 = D L

D L
 being the mean demand during “L”.

Then the following two formulas can be derived:

P(D
L
>r) =           λe-λD

L
 dD

L
 = e-λr

substituting

r = D L
 + Z

L
σ

L

we get

                                           _    1           (D L
+Z

L
σ

L
)

                                         P(D
L
>r) = e   D L

                            = e-(1+Z)

where Z is the number of standard deviations and,

N
L
 = σ

L
e-λr = σ

L
e-(1+Z)

where

σ
L
 = D L

λ  =  1

 D L
   ,


