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ABSTRACT

Pile thermal integrity assessment by means of temperature measurement has received 
increasing attention in recent years. The thermal integrity testing method measures 
temperature changes during the concrete curing process; using an appropriate concrete 
hydration model together with tracking temperature development during the curing 
process, defects within piles could be detected. However, the implementation of 
thermal integrity testing in practice faces, potentially, many uncertainties including 
undocumented concrete mixes, lack of knowledge of ground thermal properties, 
uncertain boundary conditions for pile, etc... These uncertainties increase the complexity 
of determining appropriate parameters for the hydration model, which directly affects 
the defect detection capacity of the method. This paper presents an inverse approach 
using differential evolution (DE) algorithms to determine the concrete hydration model. 
With this approach, the finite element (FE) analysis is integrated into the DE algorithm to 
generate approximate solutions that match a controlled dataset instead of approximating 
the concrete hydration parameters with limited prior knowledge as currently used in 
practice. Firstly, a field test temperature dataset with a well-defined boundary condition 
is selected. The temperature development corresponding to the selected dataset is then 
numerically simulated using an uncalibrated general hydration model. Finally, the 
hydration model parameters are determined using DE algorithms based on the measured 
and simulated temperature development as inputs. A field case study is presented in 
the end of this paper. The results indicate that the proposed inverse approach using DE 
algorithms can be used effectively in thermal integrity testing.

Keywords: Differential evolution; Thermal integrity test; Pile anomaly detection; Finite 
element modelling; Structural health monitoring

1 INTRODUCTION
Pile foundations provide support for structures by transferring the load into deeper 

layers of stiff soil or rock. Although pile foundations have been widely used in 
construction, there are still challenges about pile inspection and quality assurance. Due to 
practical construction issues and/or lack of knowledge of ground conditions, anomalies 
such as voids, soil inclusion, necking and poor concrete quality can exist inside pile 
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concrete body. These integrity problems could severely affect the load bearing capacity 
of concrete piles. Whereas, it is not possible to inspect the pile visually during or after 
installation. Therefore, pile quality control and quality assurance has been an important 
but challenging task.

A new thermal integrity testing method has been proposed recently for pile defect 
detection. The fundamental mechanism is that early age concrete release heat during 
the hydration process, temperature signatures within the concrete body will change if 
defects exist. Distributed temperature sensors are used for temperature measurement; 
the method then employs concrete hydration model and finite element analysis to predict 
temperature development, which is then compared with field test temperature data. 
The comparison between thermal integrity testing data and numerical data can provide 
further insights to identify the nature and geometry of anomalies. Details of this method 
can be found in Rui et al. (2017) and (Sun & Elshafie, 2019). 

The capacity of the thermal integrity method to detect defect depends on the accuracy 
of the hydration model. The general practice is to use a general hydration heat generation 
graph based on limited knowledge of concrete mixes and ground conditions to predict 
the theoretical concrete temperature development. In this paper, an inverse approach 
is proposed which uses measured temperature data to analyze the actual hydration 
development. The finite element (FE) analysis is integrated into a differential evolution 
(DE) algorithm to generate approximate solutions that match a controlled dataset. 

In this paper, the fundamental mechanism of concrete hydration will be presented 
first, followed by the proposed evolutionary optimization for the hydration model. Then 
a field case study will be presented to demonstrate the proposed method. Conclusions 
will be drawn at the end of the paper. 

2 CONCRETE HYDRATION MODEL
The concrete hydration reaction is a thermally activated and exothermic process. The 

amount of heat, which is liberated within the first few days of concrete casting, plays a 
crucial role in temperature development of early age concrete. Temperature abnormities 
can be a good indication of concrete anomalies. 

An early classic hydration model is developed by (De Schutter & Taerwe, 1995), 
based on a series of isothermal cement calorimetry tests and concrete adiabatic tests. 
In this model, the heat production rate  is expressed as a function of temperature and 
degree of hydration:

(1)

where ,  and  are the material constants controlling the distribution of hydration 
heat production;  is the degree of hydration, defined as the fraction of the heat of 
hydration that has been released ( );  is the apparent activation energy,  
is the universal gas constant,  is the is the maximum heat production rate at 20 
°C,  is the temperature of concrete (K), and  is the is the reference temperature (293 
K). This model has a simply mathematical expression and gives a relatively accurate 
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hydration heat prediction, but it has limitation for simulating Type Ⅲ cement. Another 
hydration model is shown below to tackle this issue. 

Another hydration model is developed based on the equivalent age maturity theory 
and Arrhenius rate theory (Schindler, 2004; Schindler & Folliard, 2005; Riding et al., 
2006). The main advantages of this model are suitability of various cement types and 
better representation of temperature effect by applying equivalent age ( ) (Malhotra & 
Carino, 2003). The model is mathematically expressed as follows:

(2)

        (3)

where  = hydration time parameter,  = hydration shape parameter, and  = 
ultimate degree of hydration,  = total heat of hydration. 

Using the hydration models above, the heat generation, transient heat flow and 
boundary conditions could be implemented using FE analysis through MATLAB. 
It would predict temperature profiles of early age concrete of different mixes and 
element geometries. However, the hydration model application in practice faces many 
uncertainties, including undocumented concrete mixes, lack of knowledge of ground 
thermal properties, uncertain boundary conditions for piles, etc... These uncertainties 
increase the complexity of determining appropriate hydration parameters, which directly 
affects the defect detection capacity of the method. The next section introduces an inverse 
approach using evolutionary algorithms to better estimate the concrete hydration model 
parameters.

3 DIFFERENTIAL EVOLUTION
An optimization algorithm known as differential evolution (DE) is adopted for this 

purpose. DE is an efficient optimization algorithm first introduced by (Storn & Price, 
1997) for global optimization over continuous parameter spaces. It is conceptually 
similar to other evolutionary algorithms such as genetic algorithms and is not prone to 
converging at local maxima. The DE algorithm has been effectively used in many recent 
engineering applications, such as geotechnical modelling (Uchida et al., 2016), damage 
detection (Jena et al., 2013; Liu & Mao, 2016) and superstructure-foundation interaction 
(Leung et al., 2017). 

3.1 Randomize Initial Population
In this process, NP initial random solutions (parameter sets) are first generated, where 

NP is the population size. The solutions are expressed in vectors form  as sown in 
Equation 4, known as target vector, which is evolved over  generations to reach an 
optimal solution. Each target vector component has -dimension element, where  is 
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the number of variables which equals to six corresponding to hydration parameters in this 

study . Storn and Price (1997) suggested that a reasonable 
population size  should be between 5 to 10 times of the number of variables .  

                                      (4)

In the concrete hydration problem, the search space of each variable is bounded by 
cement and concrete mix properties. The upper and lower bounds of these variables are 
defined as  and  
respectively. The maximum and minimum values can be found in (De Schutter & Taerwe, 
1995, 1996). The initial value of th variable for th solution at generation zero (
) can be expressed by the Equation 5, where  stands for a uniformly distributed 
random number in the interval : 

                                                  (5)

3.2 Mutation
At each subsequent generation, mutant vectors  are formed by adding the amplified 

differential variation from two target vectors to a third one, expressed by the following 
equation:

                                                 (6)

where  are mutually different random indexes chosen from integer set 
 and  is a factor with range  controlling the amplification of the 

differential variation. A larger  enables the algorithm to search in a wider scope within 
the domain of each parameter, thus empowering it with a better exploration ability. In 
the optimization later stage, as the solutions converge, the population variation becomes 
smaller. Thus, a smaller F value empowers the algorithm with a better local exploration 
and amendatory ability. Figure 1 is a schematic representation of the mutation process 
for a simple two-dimensional objective function.

Figure 1: Illustration of operation process of mutation (Storn & Price, 1997)
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3.3 Crossover
To increase the population diversity, “crossover” is introduced to determine the trial 

vectors  ( ). The operation is carried out by randomly exchanging 
components of mutation vectors  and the target vectors in the preceding generation 

, which produces the trail vectors . The 
chosen for each component of  is formulated as follows: 

(7)

where  is the crossover constant within the range , and  is a random 
integer from . Figure 2 illustrates an example crossover operation for 7-variable 
vectors.  

Figure 2: Illustration of operation process of crossover (Storn & Price, 1997)
3.4 Selection

The fitness of target vector  and trail vector  are compared and evaluated 
through an objective function . If  yields a smaller function value, then 

 is replaced by ; otherwise the original value  is retained in 
generation. The selection process is operated over the entire  population.

3.5 Objective function
Heat generation of early age concrete is controlled by hydration model. Variations of 

hydration model parameters make changes in concrete temperature prediction. In this 
study, the field test temperature development is simulated with a finite element (FE) 
program, which employs De Schutter’s hydration model for predicting concrete curing 
heat. The objective function  for determining a suitable hydration model is treated as an 
optimization problem. The optimal set of hydration parameters , as shown in Equation 
8, is obtained by minimizing the total difference between the field test temperature data 
( ) and the FE model simulated temperature ( ).

(8)
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4 FIELD CASE STUDY
A field case study of thermal integrity testing has been conducted in London. This 

project involved the construction and monitoring of a test CFA pile. The test pile is 
used for validating the thermal integrity method and the proposed concrete hydration 
evolutionary optimization. The length of the pile was 20m with a nominal diameter 
of 900mm and a reinforcement cage diameter of 750mm. Three temperature cables 
were vertically attached to the reinforcement cage and measured the temperature at 
15-minute intervals. Three one-meter long engineering inclusions were placed inside the
reinforcement cage at depths of 3m, 6m and 9m. The inclusions were made of sandbags
or containers with sand in order to simulate the defects such as loss of concrete cover
and soil inclusions. More details on the test site and instrumentation used can be found
in (Sun et al., 2019).

In this study, the measured temperature dataset between 14m and 18m depth was 
selected as the baseline temperature for calibrating the hydration model. No engineering 
defect was placed at this depth and the temperature profiles were consistently relatively 
stable. The average temperature data of three cables along 14m - 18m were selected as 
the baseline temperature ( ) for optimization. 

For efficient optimization of the hydration parameters, DE algorithms were employed 
for characterizing the hydration model. The concrete hydration heat is defined by a 

total of six parameters, grouped as a vector . Firstly, 
30 candidate solutions, known as ‘target vectors’, were first generated randomly in 
the optimization process as the initial generation population . At each generation, 
‘mutant vectors’ were formed by linear interpolation and multiplication of target vectors 
randomly selected from the population. A new set of ‘trial vectors’ was then generated 
by random mixture of the mutant vectors and the trial vectors in the previous generation. 

Fitness of target vectors and trial vectors from the old and the new generations were 
compared through an objective function, which evaluates the discrepancies between FE 
model simulated temperature data and the temperature profiles obtained from field test 
results in 14-18m depth. This discrepancy was defined as an objective function . 
The fitter solutions remain in the new population, while the weaker ones are discarded. 
The procedures above were continuously iterated until a global optimum solution was 
achieved. 

Figure 3: (a) Objective function value evolution (b) Standard deviation evolution
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Figure 3 (a) and (b) show the changes of average objective function value 
and changes of the standard deviation of objective function values of each iteration. 
The function value rapidly reduced in the first 350 generations, and then became steady 
at a function value of around 5. The standard deviation of candidate solutions in each 
generation also continuously decreased and then maintained around 0.1 after 400th 
generation. At 500th generation, the global optimum was achieved, and the optimized 
hydration model parameters were obtained as shown in Table 1. The temperature 
prediction from the calibrated hydration parameters and the baseline temperature can 
be found in Figure 4. The temperature in the figure represent the temperature change 
compared to the initial baseline temperature 23°C. It shows a good agreement with field 
test average temperature between 14-18m depth. 

Table 1 Optimized hydration model parameters

Parameters

Cement 0.787 3.3 3.0 28.0 9.91 161

Figure 4: Temperature comparison between optimized model simulation and field test

5 CONCLUSION
The key element in thermal integrity testing is to determine an accurate concrete 

hydration model which controls temperature prediction and directly affects the capacity 
of defect detection of this method. In this paper, we proposed an inverse method to 
characterize concrete hydration model parameters using evolutionary optimization. With 
this approach, the finite element analysis is integrated into the differential evolution 
algorithm to generate approximate solutions that match a controlled dataset instead of 
approximating hydration parameters with limited prior knowledge as currently used in 
practice. The method overcomes the uncertainties of concrete mixes and material thermal 
properties. The field case study further verifies that the proposed inverse approach using 
DE algorithms can be used effectively in thermal integrity testing.
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