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Abstract 

Assessing pavement condition is essential in any efforts to reduce future economic losses and improve 

the pavement performance. The resulting data are used as a record to evaluate pavement performance 

and assess their functionality and reliability. Traditional pavement condition assessment approaches 

rely on expert visual inspection and observational information along with testing using specialized 

equipment. However, these approaches are challenging because of the cost associated with 

assessment, safety issues, and the accessibility restrictions, especially after natural hazard events. 

This paper aims to develop an automated classification model to rapidly assess pavement condition 

by classifying pavement distresses using image classification that is based on Convolutional Neural 

Network (CNN) model. High-resolution aerial images representing alligator and longitudinal cracks 

for flexible pavements are collected using Unmanned Aerial Vehicle (UAV) images. The results of 

the developed model indicate an accuracy of 96.7% in classifying the two categories of pavement 

distress, while the use of UAV provides flexibility and manoeuvrability to capture the necessary data 

without risking personal safety and provides operational benefits in relatively lesser time. The 

methodology behind the developed model will help to reduce the need for on-site presence, increase 

safety, and assist emergency response managers in deciding the safest route to take after hurricane 

events. Additionally, application of the model will enable pavement engineers in rapidly assessing 

the pavement damage, aid in making quick decisions for road rehabilitation and recovery, and devise 

a restoration or repair plan. 
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1 Introduction 

Transportation, more importantly, road networks are significant components of infrastructure, which 

greatly affect the economic and social well-being of a region as people heavily depend on them for 

their daily activities. Asphalt (or flexible) pavements are a vital part of the transportation networks. 

Acquiring critical information on the pavement damage through pavement condition assessment is 

essential, especially after a hurricane. This information helps gain knowledge about the underlying 

physical phenomena, examines the impact of a natural hazard on the pavement, assesses and mitigates 

the damage, determines the need for external assistance (Lindell et al., 2003), aids in rehabilitation 

and alternative hazard management practices. However, pavement condition assessment is a very 

challenging process because it is expensive, protracted, and laborious, especially after a hurricane 

when access to the disaster-struck area is restricted (Morton et al., 2011). 

Conventional ground-based approaches for pavement condition assessment mainly rely on expert 

human visual inspection and observational information along with testing using specialized 

equipment (Aksamit et al., 2011;Weinmann et al., 2004). These techniques are labor-intensive and 

time-consuming and require both field and laboratory testing, which may cause further damage to the 

pavements. Recent technological advancement in the form of Unmanned Aerial Vehicles (UAVs) has 

proven to aid in rapid data collection through aerial reconnaissance, provide emergency responses 

and humanitarian relief, facilitate aerial monitoring and damage evaluation (Estrada et al., 2019; 

Restas, 2015), especially for inaccessible areas (Floreano et al., 2015), and provide operational and 

economic benefits (Adams et al., 2010; Ezequiel et al., 2014).  

Several studies have used image classification approaches to assess pavement conditions. These studies 

used either images collected from UAVs or from high-resolution cameras. (Ersoz et al., 2017; 

Gopalakrishnan et al., 2017; Ibragimov et al., 2020; Li et al., 2019; Zakeri et al., 2016). A general 

deficiency within current pavement condition assessment approaches is twofold: 1) limitation of image 

classification applications to either specific distress (cracking) or binary distress (crack or no crack), and 

2) relying on image pre-processing to extract relevant information for the model. The advancement in 

technology and computer vision has made several progresses to reduce human effort in various fields, 

including civil infrastructure, creating possibilities for automatic pavement distress detection and 

classification. Hence, to rapidly identify and classify pavement distresses, novel non-traditional pavement 

condition assessment methods that use aerial images based on machine or deep learning classification 

algorithms are needed to be developed. In this paper, a Convolutional Neural Network (CNN) is 

developed to classify two distress types of flexible pavements (i.e., alligator and longitudinal cracking) 

using aerial images collected from UAVs. The aerial images are captured using DJI Mavic Mini UAV 

and used in their raw form without pre-processing. Model performance is validating using a cross 

validation, and the model accuracy is expressed in terms of cross-classification rate (CCR).  

2 Methodology 

2.1 Data 

The field data collection consisted of the acquisition of aerial images for pavement distress using 

Unmanned Aerial Vehicles (UAVs). Streets shown in Figure 1 with flexible pavements at East 

Carolina University (ECU) campus in Greenville, United States were selected with two types of 

distress (i.e., alligator and longitudinal cracks). The UAV flight was manually operated, and the 

recorded videos for the streets were captured in segments of single flights in one direction. Still, 

images were then extracted from the collected videos and cropped to represent the distresses in post-
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processing. The aerial images were manually labeled and classified into two categories before 

inputting them into the model for training. 

 

Fig. 1: Locations of Surveyed Streets with Pavement Distresses on ECU campus 

The resulting dataset consists of 100 high-resolution aerial images of two types of pavement distress 

(i.e., alligator and longitudinal cracking) and is randomly divided into training and validation sets. 

The training set comprises 70% of the original dataset and is used to train the model, and the 

validation set comprises 30% of the original dataset and is used to validate the model. Table 1 shows 

the pavement distress categories and number of images for the training and validation sets.  

Table 1: Pavement Distress Categories and Frequency of Collected Data for Training and Validation 

Categories Training Set Validation Set Total 

Alligator Cracks 35 15 50 

Longitudinal Cracks 35 15 50 

Total 70 30 100 

2.2 Model Training  

To assess the pavement condition, image classification approach named Convolutional Neural 

Network (CNN) (Xie et al., 2017) is used. CNN classifies images by perceiving information from the 

raw input data (i.e., aerial images) and then learning from the features of these data. CNNs are being 

widely used for structural and road damage detection, pavement crack analysis, and pavement distress 

detection (Abdeljaber et al., 2018; Nie et al., 2018; Wang et al., 2018; Wang et al., 2017). Two 

primary operations, named as convolutions and pooling operations, and three secondary operations, 

named as ReLU activation, normalization, and dropout operations, take place in the feature extraction 

part. The rationale behind the primary operations is extracting features of the input images, while the 

rationale behind the secondary operations is enhancing the network performance. For features with 

two categories, probabilities of being in one of the two categories are calculated using logistic 

regression. For the two categories of pavement distress, the probabilities of being in one of the two 

categories are calculated as given in Equation 1: 

𝑝(𝜃) =
1

1+𝑒𝑥𝑝
𝜃𝑗

           (1)  

where; p is the probability associated with the class j during the observation n, and θ are the model 

parameters. 

Due to a sample size restriction, a transfer learning approach using AlexNet, pre-trained CNNs, is 

adopted and modified to match the smaller dataset (Gopalakrishnan et al., 2017). All the feature layers 

are considered for the modified network except the last two layers of the network (i.e., final fully 
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connected and the Softmax layers), which are initially configured to classify 1,000 objects. Therefore, 

to enable detection of the new two categories, the properties of these layers are modified. The fully 

connected layer is modified with new learning rate factor, and the Softmax layer is customized using 

a logistic regression model. The input images are resized to 227227 to fit the network requirements 

and prevent model overfitting.  

The model is then trained using a stochastic descent gradient (SGD) algorithm with momentum. SGD 

updates the network parameter after each input during the training process to increase accuracy (Li 

et al., 2019). The mini-batch size is set to 35 images, which is number of images used per update 

during training. The maximum number of epochs, which is the number of times that the learning 

algorithm will work through the entire training dataset, is set to 6, which is the number of complete 

updates of the entire dataset during training. The initial learning rate is set to 0.0001, and the feature 

layer is specified as drop 7. This layer extracts the distress features for the CNN model.  

2.3 Model Validation  

After the CNN model is trained, the predictive performance of the model is validated using cross-

validation. Cross-validation is a technique to estimate the accuracy at which the model will perform 

in practice, illustrating the model’s ability to predict new or unseen data. The validation set 

comprising 30% of the original dataset is used to perform the cross-validation. Model performance is 

assessed by finding the cross-classification rate (CCR), which indicates the percentage of pavement 

distress where the predicted distress class corresponds to the observed distress. The percentage of the 

correctly classified distress is calculated as given in Equation 2:  

 𝐶𝐶𝑅 =
∑ 𝐹𝑑𝑑
𝐷
𝑑=1

∑ ∑ 𝐹𝑐𝑑
𝐶
𝑐=1

𝐷
𝑑=1

          (2) 

where 𝐹𝑑𝑑 are observations along the diagonal of the error matrix, and 𝐹𝑐𝑑 are all observations in the 

error matrix.  

3 Results 

The CNN model was trained using a training set that counts for 70% of the original dataset. A 

randomly generated array of images for model training is shown in Figure 2. 

 

Fig. 2: Array of Random Images of Pavement Distress Used for Model Training 
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Results of model training are illustrated in Figure 3. The accuracy and loss during training are 

indicated with the blue and orange lines in the graph, respectively. The training accuracy gradually 

increases (i.e., from approximately 58% to 97%) as the algorithm passes through the dataset, with 

each epoch updating the parameters and learned features. Simultaneously, the loss during the training 

is reduced over the epochs increased (i.e., from approximately 1.1 to 0.18). The dotted line represents 

the accuracy and loss based on the validation data set for which a similar trend is observed (i.e., an 

increase in accuracy and decrease in loss) over the subsequent epochs.  

 

Fig. 3: Traces of Training and Validation Accuracy (Top) and Loss (Bottom) During Model Training 

The predictive performance of the CNN model was validated using a validation set that counts for 

30% of the original dataset. The validation accuracy was represented every three iterations during the 

training in Figure 3. The overall model accuracy is represented by the confusion matrix (Table 2) and 

was found to be 96.7%, misclassifying only one image for a single class during model validation 

which indicated a satisfactory model performance.  

Table 2: Target vs. Output Model Confusion Matrix and CCR for the Pavement Classification Model 

 Target Class  

Output Class 

 Alligator  Longitudinal  
CCR 

96.7% 
Alligator 14 (46.7%) 0 (0%) 

Longitudinal 1 (3.3%) 15 (50%) 

The output class refers to the prediction from the model, whereas the target class refers to actual label 

of the input image. The diagonal from left to right represents the correctly classified quantity (the 

number on top) and the correctly classified percentage (the percentage on bottom) of the 

corresponding categories. 

4 Conclusion 

The major contribution includes the use of advanced technology (Unmanned Aerial Vehicle) to 

collect aerial imagery for flexible pavement distresses and development of a deep learning 

classification model (Convolutional Neural Network) for the classification of the two pavement 

distresses (alligator and longitudinal cracks) in MATLAB.  

https://en.wikipedia.org/wiki/Convolutional_neural_network
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Based on the overall model accuracy, the developed CNN classification model proved to be a 

successful approach for automated pavement distress classification. The use of computer vision 

resulted in a reduction of human effort and time spent in the field for assessing pavement conditions.  

The finding from this research will aid transportation engineers in rapidly assessing the damages to 

pavements and devise a restoration or repair plan for pavements in a quick, effective, and economic 

manner. Finally, application of the developed model will provide a platform to minimize the damage 

to the pavements, which is sometimes caused by traditional approaches for pavement assessment and 

make the examination process efficient and rapid.  

Collecting data for various distresses and types of pavements, using techniques such as LIDAR or 

multispectral camera and creating 3D models for pavement distresses will aid in more realistic and 

improved evaluation of the pavement distresses. Expanding the methodology to a road network level 

and geo-referencing the location of pavement distress will provide an exact record of distress 

locations, which enable emergency responders to locate the safe routes for relief, especially after 

natural hazards and aid in decision-making regarding immediate repair and maintenance. 
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