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Abstract 

Mathematical optimization refers to the process of finding the values of variables that maximize or 

minimize a function. Structural optimization is the process of designing a structure in such a way as 

to minimize its weight or cost, while meeting a set of performance requirements, ensuring that it is 

robust, lightweight, and efficient. Two large categories of optimization algorithms are mathematical 

and metaheuristic algorithms. The ones of the first rely on mathematical principles, are 

deterministic and exact but may fail if the problem is too large or complex. The latter category, 

metaheuristics, represents algorithms that are used to find approximate solutions. They are high-

level strategies that guide the search toward a good solution, rather than being a specific, 

deterministic algorithm. They are often used for problems where it is difficult or impractical to find 

the optimal solution using exact methods. Metaheuristics typically involve iteratively improving a 

solution through some type of search or exploration process. They make use of techniques from 

probability and statistics, such as randomization and stochastic optimization, to explore the search 

space and guide the search toward good solutions. Some examples include genetic algorithms, 

simulated annealing, differential evolution (DE), particle swarm optimization (PSO), and ant colony 

optimization. In this study, a mathematical optimizer and two metaheuristics (DE, PSO), are 

employed for the optimum structural design of plane truss structures aiming to minimize the weight 

of the structure under constraints on allowable displacements and stresses. A 10-bar plane truss is 

considered as the numerical example of the study. The constraints are checked by performing an 

analysis with matrix methods. All calculations are done on a spreadsheet. The results of the 

algorithms are compared to each other as well as to results from the literature in terms of 

convergence speed, number of function evaluations, and accuracy of the solution.  

 

Keywords: Optimization; Metaheuristic; Differential Evolution; Particle Swarm Optimization; 

Spreadsheet 

  

1 Introduction 

A spreadsheet application is a computer program that allows users to create and edit spreadsheets. 

Spreadsheets are used to organize data and perform calculations with numerical information. They 

consist of rows and columns, with cells that can contain text, numbers, or formulas. Some popular 

spreadsheet applications include Microsoft® Excel® (hereafter, simply Excel), Google Sheets, Open 
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Office Calc., and Apple Numbers. Spreadsheets are commonly used for budgeting, financial 

analysis, and data management, but they also see significant applications in various engineering 

fields, such as structural engineering, (Christy, 2006), water engineering, (Pandit, 2015), 

geotechnical engineering, (Ozcep, 2010), among others. They can do basic calculations such as cost 

estimates, schedule and cost control, and markup estimation, as well as structural calculations of 

reactions, stresses, strains, deflections, and others. Many engineering firms rely on spreadsheets for 

complex engineering calculations of all kinds. Spreadsheets may not exhibit the full power and 

advanced capabilities that advanced coding with a computer language can offer, but they have the 

advantage that they are simple to use and easy to understand, without the need for the user to use 

coding to make simple or more complex calculations. 

In this work, we employ Excel for the optimum design of plane truss structures. In particular, we 

use the Excel Solver, which is a built-in optimizer of Excel, and the xl Optimizer software1 which is 

an external plug-in for Excel. The Solver has been successfully used for solving various kinds of 

structural analysis problems (Bhatti, 2005; Rady & Mahfouz, 2022; Shahnam, 2003). 

2 Structural Optimization of Trusses 

Structural optimization is the process of designing a structure (such as a bridge, building, or 

aircraft) in such a way as to minimize its weight or cost, while still meeting a set of performance 

requirements. It is a branch of engineering that involves the use of optimization techniques and 

principles of structural mechanics to design structures that are robust, lightweight, and efficient. 

Structural optimization typically involves three steps: (i) defining the design variables, constraints, 

and objective function; (ii) formulating the optimization problem; and (iii) solving the problem. The 

design variables are the parameters that can be varied in the design, such as the shape, size, and 

material of the structure. The constraints are the requirements that the structure must meet, such as 

strength, stability, and durability. The objective function is a measure of the performance of the 

structure, such as its weight or cost. 

A truss is a structure that is composed of a set of slender, pin-jointed members that are used to span 

a distance and support loads. Trusses are commonly used in engineering and construction. They are 

usually made of steel or other metals and are used in a wide variety of applications, including 

bridges, buildings, towers, and other structures. In truss sizing optimization, the aim is usually to 

find the right sections of the structural members of a truss that would lead to minimum weight while 

satisfying the design constraints. Such a problem can be formulated mathematically as: 
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Where W(x) is the total structural weight (or mass), Ne is the number of elements, x is a vector with 

the cross-section areas xi of each member, Li is the length of each member, ρi is the material density 

of element i, and g(x) are the behavioral constraints, K in total. Side constraints are also usually 

imposed on the lower and upper limits of the design variables, i.e. lbi≤ xi≤ ubi, where lbi and ubi 

denote the lower and upper bounds of the i-th design variable, respectively. 

                                                 
1 Xl Optimizer, Add-in version overview, accessed 5 January 2023, https://xloptimizer.com/overview 

https://xloptimizer.com/overview
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3 Optimization Algorithms 

In this work, we have used the Excel Solver and the xl Optimizer plug-ins for our optimization 

needs. The Solver has been used for optimizing the truss structure using mathematical algorithms 

and in particular the Generalized Reduced Gradient (GRG) method. Various metaheuristic 

algorithms are available in the literature for dealing with constrained structural optimization 

problems (Lagaros et al., 2022). In xl Optimizer, we have used two of the offered metaheuristic 

algorithms, namely, Differential Evolution (DE) and Particle Swarm Optimization (PSO). 

3.1 Generalized Reduced Gradient: Single Point and Multi start 

GRG is an algorithm for solving optimization problems with continuous variables and linear or 

nonlinear constraints. It is an iterative method that starts with an initial feasible point and then uses 

the gradient of the objective function to move toward the optimal solution. GRG works by 

constructing a quadratic approximation of the objective function at each iteration and then solving a 

series of quadratic programming sub problems to find the next iterate. The algorithm stops when the 

quadratic approximation is good enough, or when a specified termination criterion is met. One of 

the main advantages of the GRG method is that it can handle a wide range of optimization problems, 

including problems with linear constraints, nonlinear constraints, and mixed integer variables. It is 

also relatively efficient, especially for problems with a large number of variables. However, it can 

be sensitive to the initial point and may not always converge to the global optimum. It can also be 

computationally expensive for large problems with many constraints. GRG is the default algorithm 

used by Solver and it is offered in two variations: (i) “Single point” (default setting), where the 

algorithm is run once, and (ii) “Multi start” where GRG will run repeatedly, starting from different 

(automatically chosen) starting values for the decision variables. This process will usually find a 

better solution, at the expense of requiring more computing time. 

3.2 Differential Evolution 

Differential Evolution (DE) is a metaheuristic optimization algorithm that was introduced by (Storn & 

Price, 1995). It is a population-based algorithm used to find approximate solutions to optimization 

problems, particularly problems with a large number of variables. In DE, a population of candidate 

solutions is maintained, and each member of the population is represented by a set of variables or 

parameters. At each iteration, DE generates a new candidate solution by combining the variables of 

three existing solutions in a specific way. This new candidate solution is then evaluated, and if it is 

better than the worst of the three solutions that were used to generate it, it is added to the population. 

The key idea behind DE is that the combination of variables from different solutions can create new, 

potentially better solutions that would not have been found by simply exploring the search space 

randomly. DE uses several strategies to control the search process, such as scaling and crossover, which 

help to balance exploration and exploitation and avoid getting stuck in local minima. It is simple to 

implement and has been shown to be effective in many types of problems, particularly those with a 

large number of variables or complex, multimodal search spaces. DE comes in many variations 

Georgioudakis & Plevris (2020a); Georgioudakis & Plevris (2020b) and has been applied successfully 

to, many structural engineering optimization problems in the past (Georgioudakis & Plevris, 2018; Kao 

et al., 2020). In this work, we use the standard DE/Rand/1/bin scheme. 

3.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that is inspired by the 

social behavior of birds. It was first introduced by Kennedy & Eberhart (1995) as a computational 
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method for optimizing continuous, nonlinear problems. In PSO, a set of “particles” are used to 

search for a good solution to a problem. Each particle represents a potential solution to the problem 

and is initialized with a randomly generated position and velocity. The position of each particle is 

updated at each iteration based on its previous position and velocity, as well as, the positions and 

velocities of the other particles in the swarm. The movement of the particles is guided by two types 

of information: the “personal best” position of each particle, which is the best position that the 

particle has achieved so far; and the “global best” position, which is the best position that has been 

achieved by any particle in the swarm. At each iteration, each particle adjusts its velocity and 

position based on these two sources of information, with the goal of moving toward better positions 

in the search space. PSO has several attractive properties, including simplicity, flexibility, and 

robustness. It is particularly well suited to problems with many variables, or problems that are 

multimodal or noisy. It has been applied to a wide range of optimization problems, including 

function optimization, clustering, and image processing. It has also very interesting applications in 

structural engineering (Charalampakis & Dimou, 2010; Plevris et al., 2011). 

4 Numerical Example 

The 2D truss that is investigated and optimized is presented in Fig. 1. The Young’s modulus Eis equal to 

10,000 ksi (68.95 GPa), the length L is 360 in (9.144 m), the load P is 100 kip (444.82 kN) and the 

material density ρ is 0.1 lb/in3 (2767.99 kg/m3). There are 10 truss members and each one represents a 

design variable; this results in 10 design variables for the optimization problem, corresponding to the 

section area for each member, in the interval [0.1, 35] (in2) (0.64 to 225.81 cm2). The constraints of the 

optimization problem are imposed on stresses and displacements. In particular, the maximum allowable 

stress is 25 ksi (172.37 MPa) for any member, in compression or tension, while the maximum allowable 

displacement is 2 in (5.08 cm), in any of the ±x and ±y directions. Buckling is not taken into account as 

a constraint in this problem. The optimization objective is the minimization of the total weight (or total 

mass) of the structure, under the imposed constraints. This example is a standard benchmark problem 

that has been studied thoroughly by several researchers in the literature (Plevris, 2009). All simulations 

and analyses are performed in Excel on a personal computer running Windows 11, equipped with an 

Intel Core i9-8950HK (2.90 GHz) and 64 GB Ram. 

 

Fig. 1: The 10-Bar Plane Truss Model 

4.1 Results from the Literature 

Table 1 shows various results from the literature for the same problem. In this table, constraint 

violations are reported using a bold font. The best results that strictly do not violate any of the 
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constraints are the ones reported by (Plevris & Papadrakakis, 2011) and (Charalampakis & Tsiatas, 

2019). Some authors report lower objective function values, but their designs violate some of the 

constraints, as shown in the table. 

Table 1: Optimization results from the literature 

 
(Galante, 

1992) 

(Haftka 

& 

Gürdal, 

1992) 

(El-Sayed 

& Jang, 

1994) 

(Memari 

& 

Fuladgar, 

1994) 

(Ghasemi 

et al., 

1997) 

(Perez & 

Behdinan, 

2007) 

(Plevris & 

Papadrak

akis, 

2011) 

(Charala

mpakis & 

Tsiatas, 

2019) 

A1 (in2) 30.4400 30.5200 32.9700 30.5610 25.7300 33.5000 30.5218 30.5310 

A2 (in2) 0.1000 0.1000 0.1000 0.1000 0.1090 0.1000 0.1000 0.1000 

A3 (in2) 21.7900 23.2000 22.7990 27.9460 24.8500 22.7660 23.1999 23.1970 

A4 (in2) 14.2600 15.2200 14.1460 13.6190 16.3500 14.4170 15.2229 15.2280 

A5 (in2) 0.1000 0.1000 0.1000 0.1000 0.1060 0.1000 0.1000 0.1000 

A6 (in2) 0.4510 0.5510 0.7390 0.1000 0.1090 0.1000 0.5514 0.5500 

A7 (in2) 7.6280 7.4570 6.3810 7.9070 8.7000 7.5340 7.4572 7.4590 

A8 (in2) 21.6300 21.0400 20.9120 19.3450 21.4100 20.4670 21.0364 21.0450 

A9 (in2) 21.3600 21.5300 20.9780 19.2730 22.3000 20.3920 21.5285 21.5110 

A10 (in2) 0.1000 0.1000 0.1000 0.1000 0.1220 0.1000 0.1000 0.1000 

Weight (lb) 4 999.22 5060.93 5013.39 4981.09 5095.64 5024.25 5060.85 5060.86 

Max Stress (ksi) 25.08667 25.00271 31.28849 20.60011 18.52549 25.01711 24.99998 24.99991 

Max Displ. (in) 2.02798 1.99996 2.01307 2.06047 2.01368 2.03890 2.00000- 2.00000- 

4.2 Computational Tools: Excel Solver and Xl optimizer 

In this work, we have used the built-in Solver of Excel and xl Optimizer software. In particular, we 

have used two variations of the GRG mathematical algorithm of the Solver, namely the Single point 

GRG and the Multi start GRG, and two metaheuristic algorithms of xl Optimizer, namely DE and 

PSO. It has to be noted that Solver also offers a third alternative, an Evolutionary Algorithm (a 

Genetic Algorithm, GA) (Goldberg, 1989), while xl Optimizer offers a variety of additional 

optimization algorithms, such as different variants of DE, Enhanced PSO (EPSO), GA, Simulated 

Annealing, Artificial Bee colony, and others. In addition, xl Optimizer can perform multi-objective 

optimization in which two or more objectives, usually conflicting with each other, are to be 

optimized simultaneously, an advanced topic with very interesting and useful engineering 

applications (Lagaros et al., 2005; Papadrakakis et al., 2002). 

To use both tools, one first needs to set up the problem in an Excel spreadsheet. This typically 

involves defining the variables to be optimized and the constraints that must be satisfied. In our 

example, all these data are entered in Excel via their corresponding cells in a spreadsheet, i.e. the 

cell that contains the objective function, the cells that contain the variables, and the cells that 

contain the constraints. The truss analysis is done using matrix methods (the direct stiffness 

method) for plane trusses. For simplicity, no Macros or any other coding has been used for analysis 

or any other purposes. All the analysis is done using matrix operations in Excel, using standard 

Excel functions for matrix manipulation, such as “Mmult”, “Minverse” and “Transpose”, without 

the use of any coding. In most cases, we used the default settings of each optimization tool, unless 

otherwise stated. 

Excel Solver is a tool for Microsoft Excel that allows one to find an optimal solution to a problem 

that has multiple variables and constraints. The Solver comes together with Excel, as part of its 
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basic installation, but it is deactivated by default and the user has to enable it through Excel options 

(Add-ins). Many different types of problems can be solved using Solver, including linear 

programming, nonlinear programming, and integer programming problems. It can also be used to 

solve problems involving complex formulas or large datasets. 

Xl Optimizer is an advanced optimization toolbox that can be installed as an add-in to Excel. It 

implements a large variety of customizable, state-of-the-art metaheuristic algorithms in a single 

environment, featuring an intuitive user interface. The xl Optimizer add-in is installed in Excel’s 

ribbon and does not require any external programs. It is ideal for very difficult (multi-parametric, non-

differentiable, discontinuous, combinatorial, deceptive, etc.) and/or expensive optimization problems. 

4.3 Optimization Results with Solver 

Single Point Solution 

First, we use the GRG Nonlinear optimizer, which is the default optimizer of Solver. The solver 

options used are the following default options: “Max Time: Unlimited, Iterations: Unlimited, 

Precision: 0.000001, Use Automatic Scaling, Convergence: 0.0001, Population Size: 100, Random 

Seed: 0, Derivatives Forward, Require Bounds, Max Sub problems: Unlimited, Max Integer Sols: 

Unlimited, Integer Tolerance: 1%, Assume Non Negative”. In the single point solution, it is 

important to define a proper starting point, as the solution reached usually depends on the point 

initially set. In our case, we started the run with a “heavy” design, where design variables have been 

set to their upper limit, i.e., 35 in2. We also tried other options, starting all design variables from the 

25, 15, and 5 in2points, but we did not notice any significant difference in the obtained results. The 

results of the Single point solution with the GRG Nonlinear optimizer are shown in Table 2. The 

minimum obtained is 5076.67 lb. The max displacement is reported as 2 in, with a very slight 

violation of this constraint. The solution time was very fast, 0.797 seconds, for 30 iterations of the 

algorithm. 

Multi Start Solution 

For the Multi start case, the default population size given by Solver is 100 but instead, we used the 

value of 10 as we noticed that there is no significant improvement in the objective function after the 

first runs, so a value of 100 would only cause delay. The starting point is again set with all design 

variables set at their highest value (35 in2). Using Multi start, we obtain a better result (5060.84 lb), at 

the expense of spending more computing time (14.4 times more than the time needed for the Single 

Point Solution). In addition, there are slight violations of the constraints, as shown in Table 2. 

4.4 Optimization Results with Xl optimizer 

In xl Optimizer the termination criterion is set as “OR (FE>=20000, TIME_MIN>10)”, which 

means that the maximum number of iterations is 20,000 for all methods used, and also the 

maximum time of calculations is 10 minutes. The latter criterion was never triggered as the criterion 

related to the maximum number of iterations was triggered before, for all cases. The default 

constraint function is “1000*V+100”. In our case, we used a stricter constraint, “1000*V+10000”, 

to make sure that the optimum design will be feasible (with no constraint violations) in the end. 

Differential Evolution 

The DE variant used is the default one offered by the program. It is the DE/Rand/1/bin scheme 

using the following default settings: “Population code = '50', Population = 50, F = 0.5, Cr = 0.9, 

Asynchronous updating of solutions = No”. The results of DE are presented in Table 2. The 
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minimum obtained is 5060.87 lb with no violations of the constraints. The solution time was 69.098 

seconds for 20,000 iterations of the algorithm.  

Particle Swarm Optimization 

The PSO variant used is the standard PSO with the following default program settings: “Population 

code = '20', Population = 20, C1 = 2, C2 = 2, W0 = 0.8, Gamma = 0.4, Elitism = Yes.” The results 

are presented in Table 2.The results of PSO are also presented in Table 2. The minimum obtained is 

5080.57 lb with a very small violation of the displacement constraint. The solution time was 73.073 

s for 20,000 iterations of the algorithm, which is the largest time required by any algorithm tested. 

Fig. 2 shows the convergence histories for both DE and PSO metaheuristic algorithms. We see that 

PSO converges faster during the first runs, but then DE takes the lead after around 6000 iterations. 

The total number of iterations for each algorithm is 20,000 but this graph has been limited to the 

first 10,000 iterations for illustration purposes. After 10,000 iterations, DE had reached an objective 

value of 5062.67 (vs 5060.87 in the end), and PSO had already reached the same optimum as the 

one after 20,000 iterations (5080.57). 

Table 2: Optimization results with all Optimization Algorithms 

 Solver algorithms xlOptimizer algorithms 

 Single point GRG Multistart GRG DE PSO 

A1 (in2) 30.73067 30.52222 30.55354 32.28475 

A2 (in2) 0.10000 0.10000 0.10000 0.10000 

A3 (in2) 23.94943 23.20055 23.17546 23.54453 

A4 (in2) 14.72451 15.22289 15.24921 14.68662 

A5 (in2) 0.10000 0.10000 0.10000 0.10000 

A6 (in2) 0.10000 0.55103 0.55361 0.10000 

A7 (in2) 8.53892 7.45715 7.45930 8.52972 

A8 (in2) 20.95103 21.03627 21.02740 20.33665 

A9 (in2) 20.83663 21.52784 21.51037 20.75112 

A10 (in2) 0.10000 0.10000 0.10000 0.10000 

Weight (lb) 5076.67 5060.84 5060.87 5080.57 

Max Stress (ksi) 20.36570 25.00002 24.99954 20.43916 

Max Displ. (in) 2.00000+ 2.00001 2.00000- 2.00000+ 

Solution time (s) 0.797 11.5 69.098 73.073 

 

Fig. 2: The convergence histories for the DE and PSO algorithms 
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5 Conclusion 

Spreadsheets have become very powerful and popular tools in the engineering community as they 

are easy to use, provide excellent results, and do not require any coding skills. Large engineering 

firms rely on spreadsheet calculations for the design of elements of various projects. Traditionally, 

the design was done with trial and error, where the engineer would try different sets of parameters 

before ending up with an acceptable good solution, while only expert programmers could have 

access to optimization algorithms. The addition of Solver and the availability of easy-to-use and 

powerful external tools such as xl Optimizer empowers the engineer who is now able to design 

elements optimally, without having to be an expert in optimization procedures or coding. The 

Solver is a robust and reliable tool, available in every Excel installation, offering two main 

optimization algorithms (a mathematical and an evolutionary one), while xl Optimizer goes far 

beyond, offering a host of metaheuristic optimization algorithms for a wide range of applications 

and the ability to deal with multi-objective problems. The addition of such tools gives tremendous 

power to Spreadsheet calculations. In this work, we showed that both Solver and xl Optimizer can 

be used to optimize 2D truss structures efficiently, using either mathematical or metaheuristic 

algorithms. 

The next step in our research is applying the spreadsheet-based optimization techniques to larger 

scale problems Papadrakakis et al., (2001), 3D truss problems, frame problems, and multi-objective 

structural problems, while exploring additional metaheuristics, such as GA, EPSO, Simulated 

Annealing, Artificial Bee colony, and others. 
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