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Abstract 

Pavement structures are constantly deteriorating due to many distresses, for instance cracks and 

rutting that are initiated and expanded. Deterioration models of pavement structures is an important 

component of pavement management systems (PMS). The deterioration of pavements has been 

extensively modeled using Markov chains. This paper aims at formulating a more efficient 

deterioration model to predict the condition of pavement sections. It is proposed to accomplish this 

by developing a Markovian deterioration model coupled with a meta-heuristic search optimization 

method, namely genetic algorithms (GA). An essential component of the Markov chain model is the 

transition probability matrix. In the proposed model, a standard percentage prediction method was 

used to calculate the transition probabilities. This is then calibrated by integrating the GA method 

with the Markov chain. The model is based on the historical international roughness index (IRI) 

data retrieved from the long-term pavement performance (LTPP) database. To test the validity of 

the method, a real-life case study is used and the performance of the developed model was assessed 

using both validation and testing data. For predicting pavement conditions, this study concluded 

that calibrating calculated transition probabilities using meta-heuristic optimization results in better 

performance than developing the transition probabilities using classical methods. The Markovian-

GA model developed in the present study can be used to predict the future condition of pavement 

facilities in order to assist engineers in planning the optimum maintenance and rehabilitation 

(M&R) actions. 
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1 Introduction 

Civil infrastructure such as roads, bridges, airports, telephones, water networks, etc. are essential to 

society. Due to the importance of these facilities, infrastructure agencies are responsible for 

monitoring them to ensure that they remain in good condition to help the economy. Generally, there 

are many types of transportation infrastructure, including roads, streets, bridges, and parking lots. It 

is essential for researchers to pay attention to these since their deterioration can lead to serious 

consequences. Pavement structures that provide the surface of roads, streets, and bridges on which 

vehicles are especially essential due to their impact on vehicle serviceability and safety. Structural 

and surface characteristics both influence pavement performance in meeting design criteria 

throughout its service life.  

Pavement deterioration refers to the worsening of pavement or the drop of pavement conditions. 
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The deterioration of the pavement state continues until the pavement fails and reaches the point 

where it can no longer serve its function. Deterioration has stochastic nature, and because 

sometimes a sudden necessity for immediate maintenance and rehabilitation (M&R) actions are 

needed, pavement management systems (PMS) have become an important part of the decision-

making process. As an example, Abaza et al. (2004) integrated PMS with the Markovian model. 

The designed system becomes an effective decision-making tool that assists the engineers in 

planning and scheduling the M&R for pavement sections. The primary responsibilities of any PMS 

is to increase the effectiveness of the pavement decision-making process, broaden the decision-

making scope, provide feedback on the decisions made, and maintain a consistent decision-making 

process at all organizational levels (Hudson et al., 1979). PMS can be used at local, country, state, 

and federal levels (Beckley, 2016) as illustrated in Golabi et al. (1982), which developed a PMS for 

the state of Arizona and Picado-Santos et al. (2004) that created a PMS for managing Lisbon 

pavements. Particularly, pavement management studies confirmed that PMS has proven to be an 

extremely useful tool in managing large state and metropolitan paving networks (Wolters et al., 

2011). However, measuring and predicting the pavement performance is a critical part of any PMS. 

In recent years, researchers have shown considerable interest in studying the mechanisms 

underlying infrastructure deterioration and developing models to forecast the state of various forms 

of infrastructure, both of which are crucial tasks. In order to make successful, advantageous M&R 

decisions, an accurate deterioration prediction method is necessary (Ahmed et al., 2020). In 

deterioration research, there is a great variety in using different data types and different methods to 

predict the condition of infrastructure facilities, as well as in each research, every developed model 

is based on a unique set of data. Models of deterioration are categorized into three categories.  

The first category is deterministic models, which are the models formulated by a mathematical or 

statistical equation. The second category is stochastic models, which rely on random variables 

which create uncertainty in the model. The last category is Artificial Intelligence Models, which are 

a type of model based on computer techniques that require human intelligence to be developed. In 

general, all the deterioration models, regardless of the method used in its development, describe 

how the facility will perform over time. Deterioration models have been extensively simulated 

using Markov chains (Yosri et al., 2021). For instance, Ranjith et al. (2013) developed a Markovian 

model to predict the future condition of a timber bridge. Moreover, Li et al. (2014) proposed a 

Markov chain to generate a deterioration model for urban bridges in Shanghai. For pavement, 

(Kobayashi et al., 2010; Surendrakumar et al., 2013; and Anyala et al., 2014) implemented the 

Markov chain method to predict the deterioration of pavement in different places. Among all the 

discussed Markovian deterioration models, the transition probabilities were the essential part of the 

Markov chain method. 

In this study, the Markov chain approach was proposed to develop the pavement deterioration 

model. Transition probabilities were developed using a simple percentage prediction method and 

then calibrated using an optimization method in order to enhance the accuracy of the model 

prediction. To verify the accuracy of the suggested technique, the produced model’s performance 

was compared to results from previous research. 

2 Materials and Methods 

2.1 Data Extraction 

In this study, historical pavement roughness data was utilized in developing the models. The data 
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was retrieved from the Long-Term Pavement Performance (LTPP) database. LTPP is the largest 

pavement study ever conducted for the pavement sections of the United States (US) and Canada 

(Sati et al., 2020). This study was focused on pavement sections that had not been maintained or 

rehabilitated, which were 431 sections. The sections with the missing international roughness index 

(IRI) data were removed. The remaining sections used in this study were 362 sections. The 

characteristics of the pavement sections, which are the Age, Roadway Functional Class, Climatic 

Region, Freezing Index, Precipitation, Temperature, AADT, and AADTT were extracted, also from 

the LTPP database, to categorize the pavement sections. 

2.2 Research Methodology 

In this study, the methodology framework adopted, presented in Figure 1, consists of many stages. 

Many steps were executed in each stage. In the first stage, one stage has been performed, which is 

the collection and preparation of the roughness data. In the second stage, the collected data was 

converted into condition states utilizing the Federal Highway Administration (FHWA) ranges 

presented in Table 1. The data was categorized using cluster analysis. K-means cluster analysis is 

the most popular clustering method. In this method, the sum of the squared error (SSE), calculated 

by (1), between a cluster’s empirical mean and the point within the cluster is minimized. 

 𝑆𝑆𝐸 =  ∑ ∑‖𝑥𝑖 − 𝜇𝑘‖
2

𝑛

𝑖=1

𝐾

𝑘=1

 (1) 

Where n represents the number of observations within the cluster, K is the cluster number, xi is the 

center of the observation, and µk is the cluster center. 

The elbow method, which is a graphical method where the graph represents the relationship 

between the number of clusters and the sum of squared error, was proposed to find the optimum 

number of clusters. In the last stage, which is the core of this study, the model was first developed, 

then validated, and lastly tested. The following subsections will explain each in detail. 

 

Fig. 1: Research methodology 
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Table 1: FHWA ranges 

State 

 
Category 

IRI (m/km) 

Roadway Functional Class 

Interstate Other 

1 Very good < 0.95 < 0.95 

2 Good 0.95 – 1.49 0.95 – 1.49 

3 Fair 1.50 – 1.89 1.50 – 2.69 

4 Mediocre 1.90 – 2.69 2.70 – 3.48 

5 Poor 2.69 < 3.48 < 

2.3 Proposed Methods 

2.3.1 Markov Chain 

The Markov chain approach explains the sequence of potential events using a discrete number of 

events. The aim of the Markovian process is to base predictions purely on the current situation 

while ignoring the entire history. In a scientific sense, the probability of an event depends entirely 

on the current situation, regardless of the previous state. The following equation illustrates this 

process of independence, which is known as the Markov property: 

 
P (X j)  =  P(X t + 1 = i t + 1|X t = i t, X t − 1 = i t − 1 , … , X 1 = i 1, X 0 = i 0 ))  =  P(X t + 1

= i t + 1|X t = i t )  
(2) 

Where P(Xj), represents the probability of a future condition, t is the current state, while j is the 

state in the future. The odds of transitioning from state i to state j are known as the transition 

probabilities and are represented by Pij. The transition probability matrix (n×n), or P, is depicted in 

(3) and contains all possible outcomes. The number of condition states is n, as well.  

 𝑃 =  

[
 
 
 
𝑃11 𝑃12 … 𝑃1𝑗

𝑃21

⋮
𝑃22

⋮

…
…

𝑃2𝑗

⋮
𝑃𝑖1 𝑃𝑖2 … 𝑃𝑖𝑗 ]

 
 
 
  (3) 

Using the Markovian process, the time step should be selected first. Then, the future condition 

vector (Pt) will be predicted by the multiplication of the transition probability matrix and the initial 

condition vector (P0). This multiplication is raised to the power represented by the time step, as 

shown in (4). Lastly, the expected future condition will be calculated using (5). 

 𝑃𝑗 = 𝑃0 × 𝑃𝑡 (4) 

 𝐸𝑣 = ∑𝑗 × 𝑃𝑗

5

𝑗=1

 (5) 

In the simple percentage prediction method, the condition data was used to calculate the 

transitioning probability from state i to state j in terms of the simple mean. This probability is 

donated by Pij and determined using the following equation.  

 𝑃𝑖𝑗 =
n𝑖𝑗

n𝑖
  (6) 

Where nij represents the transitions’ number from state i to state j, and ni represents the total number 

of elements in state i. 

2.3.2 Genetic Algorithm Optimization 

The most popular meta-heuristic optimization algorithm utilized recently due to its diversity of 

applications is the genetic algorithm (GA) (Vasuki, 2020). It computes successive generations of 
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solutions based on a set of initial solutions and hypotheses.  

The first step in GA is the random creation of the initial population of the solution. The next step is 

to evaluate each chromosome in the population using the objective function. Then, GA operations 

will be utilized to create new chromosomes. The new chromosomes will be evaluated as well. The 

old population will be replaced with new ones. Then, these procedures will be repeated until a near-

optimal solution is found. GA has three important operations, reproduction, crossover, and 

mutation. In addition, there are other operations that can be added to the algorithm based on the 

need, such as Elitism.  

1. Reproduction: is a GA operation that first arranges the chromosomes according to their 

objective function values, then selects the members from the current population randomly 

and copies them to the next population. The most commonly used method for selection is 

the roulette wheel.  

2. Crossover: is an operator that crosses over the genes of randomly selected parents to 

produce a new offspring. It may be one point, two points, or multipoint.  

3. Mutation: is a GA operator that is implemented to ensure diversity in the population. In this 

operation, one or more genes in the parent chromosome string are altered to produce totally 

new offspring. 

4. Elitism: is an operation that can be added before the main GA operations to ensure the 

survival of the best solutions. This operation copies the elite solutions to the next generation 

without any changes. If the predefined number of iterations has been reached, an elitist 

chromosome does not change significantly from one iteration to the next, or when an 

absolute number of generations is reached, the production of the new generation will cease. 

In this study, GA was chosen because of its capability to search for a population of solutions on a 

global scale instead of a single-based search solution. In this study, GA was used as a calibration 

process of the transition probabilities generated by the percentage prediction method.  

2.3.3 Genetic Algorithm-Based Markovian model 

In this case, GA was used to minimize the mean absolute error (MAE) between the transition 

probabilities based on historical data, which are actual, and the estimated transition probabilities, as 

shown in (7). 

 𝑀𝑖𝑛 𝑀𝐴𝐸 =  
1

𝑁
∑|𝑃𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|

𝑁

𝑖=1

 (7) 

Where N is the number of probabilities in the raw, and Px is the transition probability. Since the problem 

is using data for the sections with no M&R, the transition probabilities that were optimized are: 

𝑃 =  

[
 
 
 
 
𝑃11 𝑃12 𝑃13 𝑃14 𝑃15

0 𝑃22 𝑃23 𝑃24 𝑃25

0
0
0

0
0
0

𝑃33

0
0

𝑃34

𝑃44

0

𝑃35

𝑃45

𝑃55]
 
 
 
 

 

These probabilities are subject to many constraints. The first one is the summation of each row, 

which is equal to one. 

  ∑ 𝑃𝑖𝑗
5
𝑗=1 = 1, i= 1,2,3,4, & 5 

The second one is the probability of staying in the same condition rather than transitioning to the 



 

682 

next condition for one time step that is always higher. Following is the mathematical formulation of 

this constraint: 

 𝑃11 > 𝑃12 , 𝑃12 > 𝑃13, 𝑃13 > 𝑃14, 𝑃14 > 𝑃15 

 𝑃22 > 𝑃23, 𝑃23 > 𝑃24, 𝑃24 > 𝑃25 

 𝑃33 > 𝑃34, 𝑃34 > 𝑃35 

 𝑃44 > 𝑃45 

The last constraint is that the probabilities are always between zero and one. Rarely can they be 

exactly zero or one.  

  0 ≤ 𝑃𝑖𝑗 ≤ 1 

Based on the nature of the problem in this study, each row is optimized separately since the row’s 

probabilities are related to each other, while the probabilities of different rows are not related. 

MATLAB software was used to implement the GA calculations. Before the main GA operation, 

0.05 of the population was counted as elite solutions. In addition, the rate of the crossover was 0.8, 

which means that 80% of the population was crossed over. Moreover, the default mutation option in 

MATLAB, which is mutation Gaussian, was used. In this option, each entry of the parent vector is 

given a random number according to a Gaussian distribution. 

3 Results and Discussions 

3.1 Cluster analysis  

After performing K-means cluster analysis and in order to identify the number of clusters, the 

Elbow method was applied. The results were based on the sum of squared errors (SSE). Table 2 

represents the SSE results that vary with the clusters' number. By graphically representing the 

results (Figure 2) the cluster’s optimum number is equal to three. In addition, the number of 

sections in each cluster and the division of the data in each cluster are represented in Figure 3. 

Table 2: SSE Results 

No of clusters SSE 

2 2,305.33 

3 1,731.75 

4 1,658.42 

5 1,466.28 

6 1,200.77 

7 1,181.78 

8 1,119.79 

9 994.86 

10 949.14 
 

Fig. 2: SSE vs. the number of clusters 

 

Fig. 3: Data division for each cluster 
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3.2 Markov Chain Transition Probabilities 

The following matrices represent the results of calculating the transition probabilities using the 

traditional method, percentage prediction, then calibrating these probabilities using a Genetic 

algorithm. 

Cluster 1 Cluster2 

[
 
 
 
 
0.9577

0
0
0
0

0.0276
0.9411

0
0
0

0.0110
0.0493
0.9508

0
0

0.0047
0.0104
0.0467
0.9902

0

0.0000
0.0001
0.0025
0.0098

1 ]
 
 
 
 

 

[
 
 
 
 
0.8705

0
0
0
0

0.0787
0.9521

0
0
0

0.0364
0.0332
0.9762

0
0

0.0147
0.0137
0.0206
0.9730

0

0.0007
0.0010
0.0038
0.0270

1 ]
 
 
 
 

 

 

Cluster 3 

[
 
 
 
 
0.9367

0
0
0
0

0.0363
0.9596

0
0
0

0.0182
0.0325
0.9875

0
0

0.0089
0.0078
0.0110
0.9167

0

0.0002
0.0002
0.0016
0.0833

1 ]
 
 
 
 

 

 

3.3 Performance Results 

Table 3 represents the root mean squared error (RMSE), coefficient of determination (R2), and 

mean absolute percentage error (MAPE) results for both validation and testing data. In addition, the 

performance of different studies was collected and presented in Table 4 to compare it with the 

performance of the proposed model in this study. 

Table 3: RMSE results 

 Validation Testing 

Cluster No. RMSE MAPE RMSE MAPE R2 

1 0.447 0.070 0.316 0.025 0.8334 

2 0.277 0.051 0.555 0.115 0.7505 

3 0.408 0.065 0.236 0.014 0.8622 

Table 4: The models' performance in different studies 

The study Method RMSE R2 

Yang et al. (2006) 
ANN 0.379 - 

Markov chain 0.346 - 

Attoh-Okine et al. (2009) MARS - 0.76 

Bianchini & Bandini, P. (2010) Multiple linear regression 0.2272 - 0.3790 0.8022 - 0.9196 

In summary, after developing the models, the performance of each one was calculated. Focusing on 

the testing results, the RMSE was found to be 0.316, 0.555, and 0.236 for cluster 1, cluster 2, and 

cluster 3, respectively. Moreover, the MAPE values are 0,025 for the first cluster, 0,115 for the 

second one, and 0,014 for the third cluster. The R2 ranges between 0.07505 and 0.08622. The 

results of this study were compared with previous studies that used different methods (Table 4); the 

results demonstrated that the developed models have acceptable performance. In addition, it is clear 

from the results that the model of Cluster 3 has the highest performance while Cluster 2 has the 

lowest performance. To summarize, this study found that the Markov chain performed very well in 

predicting pavement conditions when calibrating the transition probabilities using GA. 
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4 Conclusion 

This study was performed to enhance the accuracy of the Markov chain deterioration model for 

pavement sections. Data on pavement roughness was collected from the LTPP database. IRI values 

were converted into condition states using the ranges specified by FHWA. In order to classify the 

data into categories, pavement characteristics such as age, roadway functional class, climatic region, 

freezing index, precipitation, temperature, AADT, and AADTT were used. K-means cluster 

analysis was integrated with the elbow method to define the number of clusters. According to the 

results, three clusters were found to be the optimum partitioning. Each cluster's models were 

developed using the Markov chain method. A simple percentage prediction approach was presented 

to determine the transition probabilities, which are an essential part of the Markov chain. 

Then, the developed transition probabilities were calibrated using genetic algorithms. The data in 

each cluster was divided into training, validation, and testing sets. The validation and testing data 

were used to test the model's performance by utilizing RMSE, MAPE, and R2. The ranges of 

RMSE, MAPE, and R2 were 0.236 – 0.555, 0.014 – 0.115, and 0.7505 – 0.8622, respectively. The 

developed models in this research were compared to other models utilized in previous studies and 

were found to outperform previous models. This research concluded that the Markov chain models 

have better accuracy in predicting pavement conditions rather than other models. Furthermore, 

using the genetic algorithm to calibrate the transition probabilities improves the model's accuracy.  

This study was limited to sections with no maintenance and rehabilitation. For future work, other 

statistical methods such as Poisson distribution can be used to calculate the transition probabilities 

and then calibrated using a genetic algorithm or other optimization methods. Additionally, data 

from other infrastructure systems can be used to implement the proposed model to ensure its 

applicability. 
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