
2nd International Conference on Civil Infrastructure and Construction (CIC 2023) 
5-8 February, 2023         Qatar University, Doha, Qatar 

 
 

433 

A Static and Free Vibration Analysis of Porous Functionally Graded Beams 

Lazreg Hadji 
Department of Civil Engineering, University of Tiaret, Tiaret, Algeria 

lazreg.hadji@univ-tiaret.dz 

Vagelis Plevris 
Department of Civil and Architectural Engineering, Qatar University, Doha, Qatar 

vplevris@qu.edu.qa 

Royal Madan 
Department of Mechanical Engineering, G H Raisoni Institute of Engineering and Technology, Nagpur, India 

royalmadan6293@gmail.com  

 

Abstract 

In this work, the static and free vibration analysis of functionally graded (FG) porous beams is 

investigated using a new higher-order shear deformation model (HSD). The porosity that develops 

naturally during the fabrication of a material is arbitrary in nature. Therefore, in the present study, a 

variation is considered taking into account three distribution patterns, namely (i) even distribution, 

(ii) uneven distribution, and (iii) the logarithmic-uneven pattern. Furthermore, the impact of several 

micromechanical models on the bending and free vibration behavior of the beams was investigated. 

Different micromechanical models were used to examine the mechanical properties of functionally 

graded beams, the properties of which change continuously throughout the thickness following a 

power law. Using the HSD model, the equations of motion are obtained using Hamilton’s principle. 

To obtain displacements, stresses, and frequencies, the Navier type solution method was employed, 

and the numerical results were compared to those published in the literature. The impact of porosity 

and volume fraction index, different micromechanical models, mode numbers, and geometry on the 

bending and natural frequencies of imperfect FG beams were investigated. 
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1 Introduction 

Functionally graded materials (FGMs) are special materials whose properties change along the 

length/thickness because of a change in the composition of two materials’ porosity, and 

microstructure (Avcar, 2019; Hadji & Avcar, 2021; Sankar, 2001). A functionally graded material 

has varied thermo-mechanical properties and as a result, the yield strength of FGMs will vary. The 

effect of porosity on the limit speed analysis of a rotating disk was studied using variational principles 

under different loads, such as rotation and thermal (Madan & Bhowmick, 2021). The detailed 

dynamic analysis of a beam can pose significant computational challenges (Plevris & Tsiatas, 2018). 

In this work, the dynamic analysis was performed using finite element analysis, shear deformation 

theory, and modified shear deformation theory (Benaberrahmane et al., 2021; Larbi et al., 2013; 

Nguyen et al., 2017; Şimşek, 2010; Thai & Vo, 2012). The present study investigates the effect of 

porosity and volume fraction index, different micromechanical models, and geometry on the bending 

and natural frequencies of imperfect functionally graded (FG) beams. The power law variation of 

composition was considered to grade the beam in the transverse direction. Different material models 

were used to model the effective material properties of the FG beam. Hamilton’s principle was used 
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in combination with Navier’s method. The natural frequency of FG beams was calculated for different 

grading indices for both the longitudinal and the thickness directions. The analysis of imperfections 

in FGM beams reveals a logarithmic uneven distribution compared to other imperfection types 

studied. An even porosity distribution must be avoided and accordingly the proper manufacturing 

process has to be selected. 

2 Effective Properties of FGMS 

Fig. 1 shows the different models that are used to estimate the material properties effectively. The 

different models used are Voigt, Reuss, Tamura, local representative volume element (LRVE), and 

Mori-Tanaka model. Voigt and Reuss assume perfect bonding between fibers, so when the 

reinforcement is of particulate type and not long fibers, then Voigt and Reuss do not give good results. 

In such cases, the Tamura model (an empirical model) can be used. In this model, the term q is the 

stress-strain transfer ratio that can be calculated experimentally and numerically. A detailed 

description of all these models for different material properties and their estimates for different 

material combinations can be found in (Madan & Bhowmick, 2022). 

 

Fig. 1: Different material modeling methods 

3 Preliminary Concepts and Definitions 

We consider an FG beam of length L  and cross section hb , as shown in Fig. 2(a). The gradation 

of the beam is changing along the thickness direction. 

 

 

(a) (b) 

Fig. 2: (a) Geometry and coordinate system of an FG beam, (b) Porosity models 
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A beam is made of FGMs of which the volume fraction variation of ceramic and metal are denoted 

as  zVc  and  zVm , respectively, and are given by the formulas: 
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Where, p  is the volume fraction index that defines how the combination of metal and ceramic is 

distributed, with  p0 . For 0p , the beam is purely made of ceramic, whereas for p , it is 

purely metal.  

3.1 Porosity-dependent Functionally Graded Materials 

The characteristic of materials of FG porous beams can be written as 
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In this study, three types of porosity are considered; the first of them presents an even distribution 

(called hereafter Imperfect I), whereas the other ones are characterized by an uneven distribution 

(Imperfect II and III hereafter), along the beam thickness direction, as shown in Fig. 2(b). The various 

expressions of the porosity distribution are presented in detail in Table 1. 

Table 1: Porosity Distribution Types 
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For the various porosity distribution models, the material parameters of FG porous beam, such as the 

elastic modulus E, the thermal expansion coefficient β, and mass density ρ, were then calculated by 

employing the rule of mixture. 

3.2 Equations of Motion 

The Hamilton’s principle was employed, for which the strain energy (U) and kinetic energy (K) 

relations are shown in Fig. 3. A detailed solution algorithm is not included here, to maintain the 

brevity of the manuscript. For details on the solution algorithm, the interested reader is referred to the 

work of (Avcar, 2019). 
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Fig. 3: Solution Methodology 

4 Results and Discussion 

The validation study of the bending and free vibration responses of simply supported porous FG 

beams was performed with comparison to published results. To perform the analytical calculations 

of this work we used the Maple software. The beam material selected has the following 

characteristics: 

 Ceramic ( cP : Alumina, Al2O3): 380cE  GPa; 3.0 ; 3960c  kg/m3. 

 Metal ( mP : Aluminium, Al): 70mE  GPa; 3.0 ; 2702m  kg/m3. 

For convenience, the following dimensionless forms are used: 
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Table 2 presents the deflection results corresponding to uniform and sinusoid loads for different L/h 

and p. The deflection increases with increasing p and decreases with increasing L/h. For the sinusoidal 

loading case, the deflection is found to be lower compared to the one of the uniform load cases. Table 

3 demonstrates the results of displacement and stresses induced in an FG beam for various theories. 

The displacements are less for uniform load than the ones for sinusoidal load. Except for the classical 

beam theory, all other theories give similar results. 
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Table 2: Non-dimensional deflection of functionally graded (P-FGM) beams (Voigt model) 

L / h p Theory Uniform load Sinusoidal load 

5 

0 
(Sayyad & Ghugal, 2018) 3.1635 2.5004 

Present study 3.1654 2.5019 

1 
(Sayyad & Ghugal, 2018) 6.2563 4.9432 

Present study 6.2594 4.9457 

2 
(Sayyad & Ghugal, 2018) 8.0666 6.3745 

Present study 8.0677 6.3754 

5 
(Sayyad & Ghugal, 2018) 9.8414 7.7830 

Present study 9.8281 7.7723 

10 
(Sayyad & Ghugal, 2018) 10.940 8.6547 

Present study 10.9381 8.6530 

10 

0 
(Sayyad & Ghugal, 2018) 2.9496 2.3271 

Present study 2.9501 2.3275 

1 
(Sayyad & Ghugal, 2018) 5.8951 4.6506 

Present study 5.8959 4.6512 

2 
(Sayyad & Ghugal, 2018) 7.5671 5.9698 

Present study 7.5673 5.9699 

5 
(Sayyad & Ghugal, 2018) 9.0238 7.1207 

Present study 9.0204 7.1179 

10 
(Sayyad & Ghugal, 2018) 9.9411 7.8452 

Present study 9.9403 7.8446 

Table 3: Non-dimensional displacements and stresses of P-FGM beams (Voigt model, L = 5h) 

p Theory Model 
Uniform load Sinusoidal load 

w  x  xz  w  x  xz  

0 

Present RBT 3.1654 3.8019 0.7329 2.5020 3.0916 0.4769 

(Sayyad & Ghugal, 2018) ESDBT 3.1635  3.8084 0.7764 2.5004  3.0979 0.5072 

(Reddy, 1984) HSDBT 3.1654  3.8028 0.7305 2.5020  3.0916 0.4769 

(Timoshenko, 1921) FSDBT 3.1657  3.7501 0.4922 2.5023  3.0396 0.3183 

(Euler, 1744) CBT 2.8783  3.7501 – 2.2693  3.0396 – 

1 

Present RBT 6.2594 5.8835 0.7329 4.9458 4.7856 0.4769 

(Sayyad & Ghugal, 2018) ESDBT 6.2563  5.8957 0.8288 4.9432  4.7964 0.5430 

(Reddy, 1984) HSDBT 6.2594  5.8850 0.8031 4.9458  4.7856 0.5243 

(Timoshenko, 1921) FSDBT 6.1790  5.7960 0.8313 4.8807  4.6979 0.3183 

(Euler, 1744) CBT 5.7746  5.7960 – 4.5528  4.6979 – 

2 

Present RBT 8.0677 6.8824 0.6704 6.3754 5.6004 0.4368 

(Sayyad & Ghugal, 2018) ESDBT 8.0666  6.8971 0.8485 6.3745  5.6149 0.5553 

(Reddy, 1984) HSDBT 8.0677  6.8842 0.8446 6.3754  5.6004 0.5521 

(Timoshenko, 1921) FSDBT 7.9253  6.7678 1.0791 6.2601  5.4856 0.2709 

(Euler, 1744) CBT 7.4003  6.7678 – 5.8346  5.4856 – 

5 

Present RBT 9.8281 8.1104 0.5904 7.7723 6.6057 0.3856 

(Sayyad & Ghugal, 2018) ESDBT 9.8414  8.1331 0.7654 7.7830  6.6281 0.5024 

(Reddy, 1984) HSDBT 9.8281  8.1127 0.8114 7.7723  6.6057 0.5314 

(Timoshenko, 1921) FSDBT 9.4987  7.9430 1.5373 7.5056  6.4382 0.2085 

(Euler, 1744) CBT 8.7508  7.9430 – 6.8994  6.4382 – 

10 

Present RBT 10.9381 9.7119 0.6465 8.6530 7.9080 0.4224 

(Sayyad & Ghugal, 2018) ESDBT 10.940  9.7345 0.6947 8.6547  7.9300 0.4560 

(Reddy, 1984) HSDBT 10.938  9.7141 0.6448 8.6530  7.9080 0.4224 

(Timoshenko, 1921) FSDBT 10.534  9.5231 1.9050 8.3259  7.7189 1.2320 

(Euler, 1744) CBT 9.6072  9.5231 – 7.5746  7.7189 – 
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Table 4 presents the non-dimensional natural frequency of P-FGM beams of various theories for 

varying p. It can be seen that the present methodology shows good agreement with results from the 

published literature. The natural frequency decreases as p increases. 

Table 4: Non-dimensional flexural natural frequencies ( ) of simply supported P-FGM beams (Voigt model) 

Table 5 presents the displacement and stress results at different loads, namely under uniform and 

sinusoidal, for different material models. The difference in the results is because each case estimates 

the properties using different material models. The displacement is minimum for the Voigt and 

maximum for the Reuss model because these models are the ideal models and are best applicable for 

long fibers in which the bonding is perfect. Naturally, the results of the other models such as LRVE, 

Tamura, and Mori-Tanaka fall inside these upper and lower bands formed by the Reuss and Voigt 

models. The rule of mixture could not predict the properties of particle composite effectively, but it 

can be applied for lower ratios of material combinations. Its applicability can be extended in modeling 

the porosity effects, as well. The magnitude of results is found to be lower for the sinusoidal load and 

higher for the uniform load. 

Table 5: Non-dimensional displacements and stresses of P-FGM beams (p=2 and L = 5h) 

  Uniform load Sinusoidal load 

Theory (Model) w  x  xz  w  x  xz  

Present Voigt (Voigt, 1889) 8.0677 6.8824 6.3754 2.4047 5.6004 0.4368 

L/h Mode Theory Model 

Power law index  p  

0 (ceramic) 1 2 5 10 ∞ 

(Metal) 

5 1 

Present RBT 5.15274 3.99042 3.62643 3.40120 3.28160 2.67732 

(Sayyad & Ghugal, 

2018) 

ESDBT 5.15423  3.99140 3.62671 3.40000 3.28135 2.67810 

(Reddy, 1984) HSDBT 5.15274  3.99042 3.62643 3.40120 3.28160 2.67732 

(Şimşek, 2010) FSDBT 5.15247  3.99023 3.63438 3.43119 3.31343 2.67718 

(Şimşek, 2010) HSDBT 5.15274  3.99042 3.62643 3.40120 3.28160 2.67732 

(Thai & Vo, 2012) HSDBT 5.15275  3.99042 3.62644 3.40120 3.28160 2.67732 

(Vo et al., 2014) FSDBT 5.15260  3.97108 3.60495 3.40253 3.29625 2.67725 

(Vo et al., 2014) HSDBT 5.15275  3.97160 3.59791 3.37429 3.26534 2.67732 

(Timoshenko, 1921) FSDBT 5.15247  3.99023 3.63438 3.43119 3.31343 2.67718 

(Euler, 1744) CBT 5.39530  4.14840 3.77930 3.59490 3.49210 2.80336 

20 1 

Present RBT 5.46032 4.20505 3.83613 3.64849 3.53898 2.83714 

(Sayyad & Ghugal, 

2018) 

ESDBT 5.46043  4.20513 3.83614 3.64830 3.53895 2.83720 

(Reddy, 1984) HSDBT 5.46030  4.20503 3.83611 3.64850 3.53896 2.83716 

(Şimşek, 2010) FSDBT 5.46032  4.20505 3.83676 3.65088 3.54156 2.83713 

(Şimşek, 2010) HSDBT 5.46030  4.20503 3.83611 3.64850 3.53896 2.83716 

(Thai & Vo, 2012) HSDBT 5.46032  4.20505 3.83613 3.64849 3.53899 2.83714 

(Vo et al., 2014) FSDBT 5.46033  4.20387 3.83491 3.64903 3.54045 2.83714 

(Vo et al., 2014) HSDBT 5.46032  4.20387 3.83428 3.64663 3.53787 2.83714 

(Timoshenko, 1921) FSDBT 5.46032  4.20505 3.83676 3.65088 3.54156 2.83713 

(Euler, 1744) CBT 5.47770  4.21630 3.84720 3.66280 3.55470 2.84618 
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Reuss (Reuss, 1929) 10.1403 8.9372 8.0184 2.8647 7.2756 0.4231 

LRVE (Gasik, 1998) 9.3292 7.8585 7.3756 2.7326 6.3981 0.4104 

Tamura (Nakamura et al., 

2000) 

(q=0) 

(q=100) 

 

10.1403 

9.2981 

 

8.9372 

7.9333 

 

8.0184 

7.3504 

 

2.8647 

2.7089 

 

7.2756 

6.4583 

 

0.4231 

0.4184 

Mori-Tanaka (Tanaka et 

al., 1993) 
9.8633 8.5824 7.7989 2.8166 6.9869 0.4206 
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Fig. 4: The variation of the transverse displacement w  for L/h 

Fig. 4 shows the variation of displacement along x/L. The displacement is maximum for the pure 

metal case (p=∞), and it decreases with decreasing p and reaches its minimum for the pure ceramic 

case (p=0) because ceramics have higher modulus of elasticity compared to metal. 

Finally, Table 6 presents the natural frequency results for the cases L/h=5 and L/h=20. The frequency 

is maximum when there is no porosity present and decreases as the porosity fraction increases. Three 

different types of porosity variations were considered, namely the even case (Imperfect-1), the uneven 

case (Imperfect-2), and the logarithmic-uneven (Imperfect-3). The analysis shows that the Imperfect-

1 case has the lowest frequency; the maximum is achieved for Imperfect-3, while Imperfect-2 gives 

intermediate results. The results of Imperfect-2 and Imperfect-3 yield quite similar results. As the 

natural frequencies obtained for Imperfect-2 and Imperfect-3 are similar, a fabrication process that 

leads to uneven porosity distribution can be selected. 

Table 6: Variation of frequency parameters   of perfect and imperfect FG beam (p=2) 

 Perfect Imperfect I 

(even) 

Imperfect II 

(uneven) 

Imperfect III 

(Logarithmic-uneven) 

L / h a = 0 a = 0.1 a = 0.2 a = 0.1 a = 0.2 a = 0.1 a = 0.2 

5 3.6264 3.4418 3.1489 3.6069 3.5785 3.6075 3.5816 

20 3.8361 3.6335 3.3123 3.8226 3.8004 3.8230 3.8029 

Lx /

w
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5 Conclusion 

The conclusion of the research work can be summarized in the following points: 

1. If the distribution of porosity in the beam is of imperfect type-1 (even) then the natural 

frequency would be minimum. The natural frequency is maximum for the case of imperfect 

type-3 (logarithmic-uneven). Therefore, a manufacturing technique would be intended to get 

a porosity development of logarithmic type and not evenly distributed. As expected, the 

natural frequency decreases with the introduction of porosity because of the degradation of 

material properties.  

2. The dimensionless transverse displacement is minimum for ceramic and maximum for metal 

and intermediate in the case of FGMs, so a beam which is ceramic rich (p=0) yields lower 

displacements compared to a beam which is metal-rich (p=10) in composition.  

3. The Voigt model gives the lowest displacement and the Reuss model gives the maximum. The 

Tamura model and Reuss gave identical results. The results of the present method show good 

agreement with the ones of the other theories published in the literature. 
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